First of all the kinetic energy is when the particles move in continuous random motion.
If the temperature is high the colliding particles will collide more. and if the temperature is low the colliding particles will collide less.
Low temperature result in low kinetic energy
High temperature result in high kinetic energy
Absolute zero is the point where where all molecules have no kinetic energy. It is a theoretical value (it has never been reached).
The Kelvin temperature scale is based on absolute zero being the lowest possible temperature that could theoretically be reached. That is why there is no such thing as a negative Kelvin temperature value.
I think it might be A. I’m sorry if I’m wrong
Answer: current I = 0.96 Ampere
Explanation:
Given that the
Resistance R = 60 Ω
Power = 55 W
Power is the product of current and voltage. That is
P = IV ...... (1)
But voltage V = IR. From ohms law.
Substitutes V in equation (1) power is now
P = I^2R
Substitute the above parameters into the formula to get current I
55 = 60 × I^2
Make I^2 the subject of formula
I^2 = 55/60
I^2 = 0.92
I = sqr(0.92)
I = 0.957 A
Therefore, 0.96 A current must be applied.
Answer:
<em>11.06m/s²</em>
Explanation:
According to Newtons second law of motion

Given
Mass m = 17kg
Fm = 208N
theta = 36 degrees
g = 9.8m/s²
a is the acceleration
Substitute
208 - 0.148(17)(9.8)cos 36 = 17a
208 - 24.6568cos36 = 17a
208 - 19.9478 = 17a
188.05 = 17a
a = 188.05/17
a = 11.06m/s²
<em>Hence the the magnitude of the resulting acceleration is 11.06m/s²</em>
Determined the displacement of a plane is 66 m:s