Neck to the sand in the water hope this help can i get brinlist??
Answer:
See explanation
Explanation:
The equation of the reaction is;
C3H8 + 5O2 ----> 3CO2 + 4H2O
Number of moles of C3H8 = 132.33g/44g/mol = 3 moles
1 mole of C3H8 yields 3 moles of CO2
3 moles of C3H8 yields 3 × 3/1 = 9 moles of CO2
Number of moles of oxygen = 384.00 g/32 g/mol = 12 moles
5 moles of oxygen yields 3 moles of CO2
12 moles of oxygen yields 12 × 3/5 = 7.2 moles of CO2
Hence C3H8 is the limiting reactant.
Mass of CO2 produced = 9 moles of CO2 × 44 g/mol = 396 g of CO2
1 moles of C3H8 yields 4 moles of water
3 moles of C3H8 yields 3 × 4/1 = 12 moles of water
Mass of water = 12 moles of water × 18 g/mol = 216 g of water
b) Actual yield = 269.34 g
Theoretical yield = 396 g
% yield = actual yield/theoretical yield × 100/1
% yield = 269.34 g /396 g × 100
% yield = 68%
The pH of the solution at 25 degree celsius of 1.3 × 10⁻⁶ moles of a sample of Sr(OH)₂ is 10.02.
<h3>How do we calculate pH?</h3>
The pH of any solution gives an idea about the acidic and basic nature of the solution and the equation of pH will be represented as:
pH + pOH = 14
Given that,
Moles of Sr(OH)₂ = 1.3 × 10⁻⁶ mol
Volume of solution = 25mL = 0.025L
The concentration of Sr(OH)₂ in terms of molarity = 1.3×10⁻⁶/0.025
= 5.2×10¯⁵M
Dissociation of Sr(OH)₂ takes place as:
Sr(OH)₂ → Sr²⁺ + 2OH⁻
From the stoichiometry of the reaction 1 mole of Sr(OH)₂ produces 2 moles of OH⁻.
Given that the base is a strong base and that it entirely dissociates into its ions, the hydroxide ion concentration is 5.2×10¯⁵×2 = 1.04×10¯⁴ M.
pOH = -log[OH⁻]
pOH = -log(1.04×10¯⁴)
pOH = 3.98
Now we put this value on the first equation we get,
pH = 14 - 3.98 = 10.02
Therefore, the value of pOH is 10.02.
Learn more about pH here:
brainly.com/question/24595796
#SPJ4
Answer:
the rock has a greater amount of heat energy which transfers to water causing vaporization.