Answer:

Explanation:
The equivalent of Newton's second law for rotational motions is:

where
is the net torque applied to the object
I is the moment of inertia
is the angular acceleration
In this problem we have:
(net torque, with a negative sign since it is a friction torque, so it acts in the opposite direction as the motion)
is the moment of inertia
Solving for
, we find the angular acceleration:

Answer:
The acceleration of the cart is 1.0 m\s^2 in the negative direction.
Explanation:
Using the equation of motion:
Vf^2 = Vi^2 + 2*a*x
2*a*x = Vf^2 - Vi^2
a = (Vf^2 - Vi^2)/ 2*x
Where Vf is the final velocity of the cart, Vi is the initial velocity of the cart, a the acceleration of the cart and x the displacement of the cart.
Let x = Xf -Xi
Where Xf is the final position of the cart and Xi the initial position of the cart.
x = 12.5 - 0
x = 12.5
The cart comes to a stop before changing direction
Vf = 0 m/s
a = (0^2 - 5^2)/ 2*12.5
a = - 1 m/s^2
The cart is decelerating
Therefore the acceleration of the cart is 1.0 m\s^2 in the negative direction.
Its D that so easy look at it