For 15 you have to subtract the 72 from the total amount of money and ten divide the remaining money from how much each game costs
Given: Principal Amount (P) = $300
The rate of interest (r) = (3/4) compounded quarterly.
No. quarters in 3 years (n) = 3×4 = 12
To find: The amount for the CD on maturity. Let it will be (A)
Formula: Compound Amount (A) = P [ 1 + (r ÷100)]ⁿ
Now, (A) = P [ 1 + (r ÷100)]ⁿ
or, = $300 [ 1 + (3 ÷400)]¹²
or, = $300 × [ 403 ÷ 400]¹²
or, = $300 × 1.0938069
or, = $ 328.14
Hence, the correct option will be C. $328.14
Answer:
x2+12 (except the 2 in small)
Step-by-step explanation:
(っ◔◡◔)っ ♥ follow me ♥
˜”*°•.˜”*°• say thank you on profile •°*”˜.•°*”˜
░▒▓█ ℝαte █▓▒░
Expand the brackets first
5(wx-v) = 9(x + v)
5wx - 5v = 9x + 9v
Get all x's on one side and everything on on the other side
9x - 5wx = 9v + 5v
factorise out the x
x(9-5w) = 14v
then divide by 9-5w
x = 14v/(9-5w)
Answer:
see explanation
Step-by-step explanation:
the equation of parabola in vertex form is
y = a(x - h)² + k
where (h, k ) are the coordinates of the vertex and a is a multiplier.
here (h, k ) = (3, 1 ) , then
y = a(x - 3)² + 1
to find a substitute any other point on the graph into the equation.
using (0, 7 )
7 = a(0 - 3)² + 1 ( subtract 1 from both sides )
6 = a(- 3)² = 9a ( divide both sides by 9 )
=
= a
y =
(x - 3)² + 1 ← in vertex form
------------------------------------------------------
the equation of a parabola in factored form is
y = a(x - a)(x - b)
where a, b are the zeros and a is a multiplier
here zeros are - 1 and 3 , the factors are
(x - (- 1) ) and (x - 3), that is (x + 1) and (x - 3)
y = a(x + 1)(x - 3)
to find a substitute any other point that lies on the graph into the equation.
using (0, - 3 )
- 3 = a(0 + 1)(0 - 3) = a(1)(- 3) = - 3a ( divide both sides by - 3 )
1 = a
y = (x + 1)(x - 3) ← in factored form