1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Hoochie [10]
3 years ago
13

The relationship between m2,cm2,mm2 and km2​

Physics
2 answers:
Tema [17]3 years ago
4 0

Answer:

m2

Explanation:

I just knowyyysydyyyyyyyýdydysyydysysydydhdhhdhdhdhxhchxhhxhc

Len [333]3 years ago
4 0

Answer:

Square Meters to Square Centimeters Conversion

1 Square meter (m2) is equal to 10000 square centimeters (cm2). ... For example, to convert 10 m2 to cm2, multiply 10 by 10000, that makes 100000 cm2 is 10 m2.

cm2↔mm2 1 cm2 = 100 mm2.

You might be interested in
I’ll give brainliest!! please help and answer correctly! plsss answer quick
Rashid [163]

Answer: The motion of the object will remain the same

Explanation:

6 0
3 years ago
How are stars formed and classified?
Romashka-Z-Leto [24]
Stars form from an accumulation of gas and dust, which collapses due to gravity and starts to form stars. Stars are typically classified by their spectrum in what is known as the Morgan-Keenan or MK system.
6 0
3 years ago
What physical quantity is a measure of the amount of inertia an object has?
satela [25.4K]
Mass is the physical quantity
3 0
4 years ago
7. Two people are pushing a 40.0kg table across the floor. Person 1 pushes with a force of 490N
artcher [175]

Answer:

20.4 m/s^{2}

Explanation:

To start doing this problem, first draw a free body diagram of the table. My teacher always tells us to do this, and I find that it is very helpful. I have attached a free body diagram to this answer- take a look at it.

First, let us see if Net force = MA. To do that, we need to determine whether the object is at equilibrium horizontally. For an object to be at equilibrium, it either needs to be moving at a constant velocity or not moving at all. Also, if an object is at equilibrium, there will not be any acceleration. But we know that there IS acceleration horizontally, so it cannot be in equilibrium. If it is not in equilibrium, we can use the formula ∑F= ma.

Let us determine the net force. Since the object is moving horizontally, we can ignore the weight and normal force, because they are vertical forces. The only horizontal forces we need to worry about are the applied force and force of friction.

Applied force = 1055 N (490 + 565)

Friction force= Unknown

To find the friction force, use the kinetic friction formula, Friction = μkN

μk is the coefficient, which the problem includes- it is 0.613.

N is the normal force, which we have to find.

*To find the normal force, we have to determine if the object is at equilibrium VERTICALLY. Since it has no acceleration vertically (it's not moving up/down), it is at equilibrium. Now, when an object is at equilibrium in one direction, it means that all the forces in that direction are equal. What are our vertical forces? Weight (mg) and Normal force (N). So it means that the Normal force is equal to the Weight.

Weight = mg = (40)(9.8) = 392 N

Normal force = 392 N

Now, plug it back into the formula (μkN): (0.613)(392) = 240.296 N

Friction = 240.296 N

Now that we know the friction, we can find the horizontal net force. Just subtract the friction force, 240.296 from the applied force, 1055 N

Horizontal Net Force: 814.704 N

Now that we know the net force, plug in the numbers for the formula

∑F= ma.

814.704 = (40.0)(a)

*Divide on both sides)

a = 20.3676 m/s^2

Round it to 3 significant figures, to get:

20.4 m/s^{2}

7 0
3 years ago
Cuanto cambia la entropía de 0.50 kg de vapor de mercurio [Lv: 2.7 x 10⁵ j/kg ] al calentarse en su punto de ebullición de 357°
lord [1]

Answer:

La entropía del vapor de mercurio cambia en 214.235 joules por Kelvin.

Explanation:

Por definición de entropía (S), medida en joules por Kelvin, tenemos la siguiente expresión:

dS = \frac{\delta Q}{T} (1)

Donde:

Q - Ganancia de calor, en joules.

T - Temperatura del sistema, en Kelvin.

Ampliamos (1) por la definición de calor latente:

dS = \frac{L_{v}}{T}\cdot dm (1b)

Donde:

m - Masa del sistema, en kilogramos.

L_{v} - Calor latente de vaporización, en joules

Puesto que no existe cambio en la temperatura durante el proceso de vaporización, transformamos la expresión diferencial en expresión de diferencia, es decir:

\Delta S = \frac{\Delta m \cdot L_{v}}{T}

Como vemos, el cambio de la entropía asociada al cambio de fase del mercurio es directamente proporcional a la masa del sistema. Si tenemos que m = 0.50\,kg,L_{v} = 2.7\times 10^{5}\,\frac{J}{kg} and T = 630.15\,K, entonces el cambio de entropía es:

\Delta S = \frac{(0.50\,kg)\cdot \left(2.7\times 10^{5}\,\frac{J}{kg} \right)}{630.15\,K}

\Delta S = 214.235 \,\frac{J}{K}

La entropía del vapor de mercurio cambia en 214.235 joules por Kelvin.

3 0
3 years ago
Other questions:
  • Water is pumped from a lower reservoir to a higher reservoir by a pump that provides 20 kW of useful mechanical power to the wat
    5·1 answer
  • The combined electrical resistance R of two resistors R_1 and R_2, connected in parallel, is given by 1/R = 1/R_1 + 1/R_2 where
    9·1 answer
  • Which term describes a substance that has a low melting point and poor electrical conductivity?
    6·1 answer
  • A biker is pedaling at a constant speed of 36 km/h. During the last 10 s of the race, he increases his speed with a constant acc
    14·1 answer
  • DNA’s diameter is 0.000000002 meters. What is this measurement in scientific notation? a. 2.0 x 109 m
    9·1 answer
  • Need help on these 2 questions please????? Hurry
    5·1 answer
  • When used as an energy source in a nuclear power plant, uranium is burned in a similar way as one would burn wood or coal for en
    9·1 answer
  • A cart of 8 kg mass has a force of 16 newtons exerted on it, what is its acceleration?
    13·1 answer
  • The bodies in this universe attract one another name the scientist who propounded this statement​
    7·1 answer
  • Look at the distance-time graph below. It shows Angela's journey as she walks to the end of the road and back. The gradient repr
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!