1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sveta [45]
3 years ago
6

provides some pertinent background for this problem. A pendulum is constructed from a thin, rigid, and uniform rod with a small

sphere attached to the end opposite the pivot. This arrangement is a good approximation to a simple pendulum (period = 0.61 s), because the mass of the sphere (lead) is much greater than the mass of the rod (aluminum). When the sphere is removed, the pendulum no longer is a simple pendulum, but is then a physical pendulum. What is the period of the physical pendulum?
Physics
1 answer:
gavmur [86]3 years ago
8 0

Answer:

the period of the physical pendulum is 0.498 s

Explanation:

Given the data in the question;

T_{simple = 0.61 s

we know that, the relationship between T and angular frequency is;

T = 2π/ω ---------- let this be equation 1

Also, the angular frequency of physical pendulum is;

ω = √(mgL / I ) ------ let this equation 2

where m is mass of pendulum, L is distance between axis of rotation and the center of gravity of rod and I  is moment of inertia of rod.

Now, moment of inertia of thin uniform rod D is;

I = \frac{1}{3}mD²

since we were not given the length of the rod but rather the period of the simple pendulum, lets combine this three equations.

we substitute equation 2 into equation 1

we have;

T = 2π/ω OR T = 2π/√(mgL/I) OR T = 2π√(I/mgL)

so we can use I = \frac{1}{3}mD² for moment of inertia of the rod

Since center of gravity of the uniform rod lies at the center of rod

so that L =  \frac{1}{2}D.

now, substituting these equations, the period becomes;

T = 2π/√(I/mgL) OR T = 2\pi \sqrt{\frac{\frac{1}{3}mD^2 }{mg(\frac{1}{2})D } } OR T = 2π√(2D/3g )  ----- equation 3

length of rod D is still unknown, so from equation 1 and 2 ( period of pendulum ),

we have;

ω_{simple = 2π/T_{simple OR  ω_{simple = √(g/D) OR  ω_{simple = 2π√( D/g )  

so we simple solve for D/g and insert into equation 3

so we have;

T = √(2/3) × T_{simple

we substitute in value of T_{simple

T = √(2/3) × 0.61 s

T = 0.498 s

Therefore, the period of the physical pendulum is 0.498 s

 

You might be interested in
Why does the sky change colors at sunset?
KiRa [710]

Atmospheric refraction is the deviation of light or other electromagnetic wave from a straight line as it passes through the atmosphere due to the variation in air density as a function of height. ... Refraction not only affects visible light rays, but all electromagnetic radiation, although in varying degrees.

So in short, the answer is D.

(My answer got deleted because it didnt explain which is dumb)

8 0
3 years ago
Read 2 more answers
A hill is 132 m long and makes an angle of 12.0 degrees with the horizontal. As a 54 kg jogger runs up the hill, how much work d
TEA [102]

Answer:

14523.55J

Explanation:

The work done by the jogger against gravity is given by the following equation;

W=mgh.................(1)

where m is the mass, g is acceleration due to gravity taken as 9.8m/s^2 and h is the height of the hill.

Since the length of the hill is 132m and it is inclined at 12 degrees to the horizontal, the height is thus given as follows;

h=132sin12^o\\h=27.44m

Substituting this into equation (1) with all other necessary parameters, we obtain the following;

W=54*9.8*27.44\\W=14523.55J

4 0
3 years ago
A 0.750 kg block is attached to a spring with spring constant 13.0 N/m . While the block is sitting at rest, a student hits it w
trapecia [35]

To solve this problem we will apply the concepts related to energy conservation. From this conservation we will find the magnitude of the amplitude. Later for the second part, we will need to find the period, from which it will be possible to obtain the speed of the body.

A) Conservation of Energy,

KE = PE

\frac{1}{2} mv ^2 = \frac{1}{2} k A^2

Here,

m = Mass

v = Velocity

k = Spring constant

A = Amplitude

Rearranging to find the Amplitude we have,

A = \sqrt{\frac{mv^2}{k}}

Replacing,

A = \sqrt{\frac{(0.750)(31*10^{-2})^2}{13}}

A = 0.0744m

(B) For this part we will begin by applying the concept of Period, this in order to find the speed defined in the mass-spring systems.

The Period is defined as

T = 2\pi \sqrt{\frac{m}{k}}

Replacing,

T = 2\pi \sqrt{\frac{0.750}{13}}

T= 1.509s

Now the velocity is described as,

v = \frac{2\pi}{T} * \sqrt{A^2-x^2}

v = \frac{2\pi}{T} * \sqrt{A^2-0.75A^2}

We have all the values, then replacing,

v = \frac{2\pi}{1.509}\sqrt{(0.0744)^2-(0.750(0.0744))^2}

v = 0.2049m/s

7 0
3 years ago
The total amount of energy contained in an object
Elenna [48]

The total amount of energy stored in the particles of an object is called its internal energy. The internal energy of an object is made up of the kinetic energy due to the random motion of the particles and the potential energy due to the interactive forces among the particles.

7 0
3 years ago
A tabletennis ball strikes an at-rest bowling ball. The table tennis ball is
masya89 [10]

-- The table tennis ball bounces back with virtually its entire original speed.

-- The bowling ball rolls forward, so slowly that only complex expensive laboratory equipment can detect and measure its speed.

-- Once again, momentum is conserved !

4 0
3 years ago
Other questions:
  • What are some ways that electric fields are similar to magnetic fields?
    12·1 answer
  • A stone was dropped off a cliff and hit the ground with a speed of 88 ft/s . What is the height of the cliff? (Use 32 ft/s 2 for
    11·1 answer
  • A 1.95-nC charged particle located at the origin is separated by a distance of 0.0800 m from a 3.78-nC charged particle located
    15·1 answer
  • When do sea breezes occur?
    7·2 answers
  • A boat having a length 3m and breadth 2m is floating on a
    12·1 answer
  • In most cases, how many electrons does it take to completely fill the
    10·1 answer
  • Why is it important for you to understand the basics of organ systems?
    12·1 answer
  • A young kid of mass m = 36 kg is swinging on a swing. The length from the top of the swing set to the seat is L = 3.5 m. The boy
    10·1 answer
  • A 2 kg block is pushed against a spring (k = 400 N/m), compressing it 0.3 m. When the block is released, it moves along a fricti
    12·1 answer
  • Identify Label these cell parts
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!