Answer: The magnitude of the current in the second wire 2.67A
Explanation:
Here is the complete question:
Two straight parallel wires are separated by 7.0 cm. There is a 2.0-A current flowing in the first wire. If the magnetic field strength is found to be zero between the two wires at a distance of 3.0 cm from the first wire, what is the magnitude of the current in the second wire?
Explanation: Please see the attachments below
The Moment of Inertia of the Disc is represented by
. (Correct answer: A)
Let suppose that the Disk is a Rigid Body whose mass is uniformly distributed. The Moment of Inertia of the element is equal to the Moment of Inertia of the entire Disk minus the Moment of Inertia of the Hole, that is to say:
(1)
Where:
- Moment of inertia of the Disk.
- Moment of inertia of the Hole.
Then, this formula is expanded as follows:
(1b)
Dimensionally speaking, Mass is directly proportional to the square of the Radius, then we derive the following expression for the Mass removed by the Hole (
):


And the resulting equation is:



The moment of inertia of the Disc is represented by
. (Correct answer: A)
Please see this question related to Moments of Inertia: brainly.com/question/15246709
Answer:
It conserves both energy and momentum in the collision at the same time. By design, when the balls collide the strings that hold them up are vertical (assuming balls are only swung from one side).
Explanation:
Hope This Helps!!