Water's relatively small size allows it to fit between individual atoms, driving them apart. Water's hydrophobic nature separates polar and non-polar substances. Water's polarity allows it to dissolve ionic and polar compounds.
The temperature : 263.016 K
<h3>Further explanation</h3>
Combined with Boyle's law and Gay Lussac's law

P1 = initial gas pressure (N/m² or Pa)
V1 = initial gas volume (m³)
P2 = gas end pressure
V2 = the final volume of gas
T1 = initial gas temperature (K)
T2 = gas end temperature
P1=760 mmHg
V1= 4 L
T1 = 275 K
P2=704 mmHg
V1=4.13 L

#7 is D because you move the decimal 4 places
Answer:
The answer is 2.107 × 10²⁴ He atoms
Explanation:
To find the number of atoms given the number moles we use the formula
<h3>N = n × L</h3>
where n is the number of moles
N is the number of entities
L is the Avogadro's constant which is
6.02 × 10²³ entities
We have
N = 3.5 × 6.02 × 10²³
We have the final answer as
<h3>2.107 × 10²⁴ He atoms</h3>
Hope this helps you