Answer:
mass flow rate = 0.0534 kg/sec
velocity at exit = 29.34 m/sec
Explanation:
From the information given:
Inlet:
Temperature 
Quality 
Outlet:
Temperature 
Quality 
The following data were obtained at saturation properties of R134a at the temperature of -16° C




Answer:
yes for sure
Explanation:
iran oy has 3000 ballistic missiles but america has thousands of nukes. we can easily outnumber their forces as well. this will be a easy victory for us but will result in massive casualties on both sides
Answer:
The pressure upstream and downstream of a shock wave are related as

where,
= Specific Heat ratio of air
M = Mach number upstream
We know that 
Applying values we get

Similarly the temperature downstream is obtained by the relation
![\frac{T_{1}}{T_{o}}=\frac{[2\gamma M^{2}-(\gamma -1)][(\gamma -1)M^{2}+2]}{(\gamma +1)^{2}M^{2}}](https://tex.z-dn.net/?f=%5Cfrac%7BT_%7B1%7D%7D%7BT_%7Bo%7D%7D%3D%5Cfrac%7B%5B2%5Cgamma%20M%5E%7B2%7D-%28%5Cgamma%20-1%29%5D%5B%28%5Cgamma%20-1%29M%5E%7B2%7D%2B2%5D%7D%7B%28%5Cgamma%20%2B1%29%5E%7B2%7DM%5E%7B2%7D%7D)
Applying values we get
![\frac{T_{1}}{423}=\frac{[2\times 1.4\times 1.8^{2}-(1.4-1)][(1.4-1)1.8^{2}+2]}{(1.4+1)^{2}\times 1.8^{2}}\\\\\therefore \frac{T_{1}}{423}=1.53\\\\\therefore T_{1}=647.85K=374.85^{o}C](https://tex.z-dn.net/?f=%5Cfrac%7BT_%7B1%7D%7D%7B423%7D%3D%5Cfrac%7B%5B2%5Ctimes%201.4%5Ctimes%201.8%5E%7B2%7D-%281.4-1%29%5D%5B%281.4-1%291.8%5E%7B2%7D%2B2%5D%7D%7B%281.4%2B1%29%5E%7B2%7D%5Ctimes%201.8%5E%7B2%7D%7D%5C%5C%5C%5C%5Ctherefore%20%5Cfrac%7BT_%7B1%7D%7D%7B423%7D%3D1.53%5C%5C%5C%5C%5Ctherefore%20T_%7B1%7D%3D647.85K%3D374.85%5E%7Bo%7DC)
The Mach number downstream is obtained by the relation

Answer:
// Program is written in C++ Programming Language
// Comments are used for explanatory purpose
#include<iostream>
using namespace std;
int main ()
{
// Variable declaration
string name;
int numQuestions;
int numCorrect;
double percentage;
//Prompt to enter student's first and last name
cout<<"Enter student's first and last name";
cin>>name; // this line accepts input for variable name
cout<<"Number of question on test"; //Prompt to enter number of questions on test
cin>> numQuestions; //This line accepts Input for Variable numQuestions
cout<<"Number of answers student got correct: "; // Prompt to enter number of correct answers
cin>>numCorrect; //Enter number of correct answers
percentage = numCorrect * 100 / numQuestions; // calculate percentage
cout<<name<<" "<<percentage<<"%"; // print
return 0;
}
Explanation:
The code above calculates the percentage of a student's score in a certain test.
The code is extracted from the Question and completed after extraction.
It's written in C++ programming language
Answer:
initial diameter of the sample is 2.95 mm
Explanation:
given data
yield load = 2100 N
maximum load = 3400 N
failure load = 2350 N
ultimate engineering stress = 497.4 MPa = 497 ×
N/m²
to find out
What was the initial diameter of the sample in mm
solution
we will apply here ultimate engineering stress formula that is express as
ultimate engineering stress =
...............1
here A is area and P max is maximum load applied
so area =
here d is initial diameter
so put all value in equation 1
497 ×
= 
solve it we get d
d = 2.95 ×
m
so initial diameter of the sample is 2.95 mm