Answer:
2074.2 KW
Explanation:
<u>Determine power developed at steady state </u>
First step : Determine mass flow rate ( m )
m / Mmax = ( AV )₁ P₁ / RT₁ -------------------- ( 1 )
<em> where : ( AV )₁ = 8.2 kg/s, P₁ = 0.35 * 10^6 N/m^2, R = 8.314 N.M / kmol , </em>
<em> T₁ = 720 K . </em>
insert values into equation 1
m = 0.1871 kmol/s ( mix )
Next : calculate power developed at steady state ( using ideal gas tables to get the h values of the gases )
W( power developed at steady state )
W = m [ Yco2 ( h1 - h2 )co2
Attached below is the remaining part of the detailed solution
Answer:
Connect the test light in series with the negative post, and start pulling feed wires. The first to check is the heavy charging wire from the alternator. A bad or leaky diode in an alternator is a very common source of overnight battery drain. Connect wires one at a time to see what lead is drawing current.
Answer:
engine B is more efficient.
Explanation:
We know that Carnot cycle is an ideal cycle for all working heat engine.In Carnot cycle there are four processes in which two are constant temperature processes and others two are isentropic process.
We also kn ow that the efficiency of Carnot cycle given as follows

Here temperature should be in Kelvin.
For engine A



For engine B



So from above we can say that engine B is more efficient.
Answer:
Atlantis benefited from lessons learned in the construction and testing of Enterprise, Columbia and Challenger. ... The Experience gained during the Orbiter assembly process also enabled Atlantis to be completed with a 49.5 percent reduction in man hours (compared to Columbia).
Explanation: