1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dimulka [17.4K]
3 years ago
13

Suppose you have a 9.00 V battery, a 2.00 μF capacitor, and a 7.40 μF capacitor. (a) Find the charge and energy stored if the ca

pacitors are connected to the battery in series. (b) Do the same for a parallel connection.
Engineering
2 answers:
Andru [333]3 years ago
5 0

Answer:

Q=1.575*10^-6*9=1.42*10^-5C\\\\U_{c} =\frac{1}{2}*9^{2} *1.575*10^-6=6.38*10^-5J

Q=9.4*10^-6*9=8.46*10^-5C\\\\U_{c} =\frac{1}{2}*9^{2} *9.4*10^-6=3.81*10^-4J

Explanation:

<u>a)</u>

<u>Identify the unknown:  </u>

The charge and energy stored if the capacitors are connected in series  

<u>List the Knowns: </u>

Capacitance of the first capacitor: C_{1}= 2цF = 2 x 10-6 F

Capacitance of the second capacitor C_{2}= 7.4цF  = 7.4 x 10-6 F

Voltage of battery: V = 9 V  

<u>Set Up the Problem:   </u>

Capacitance of a series combination:  

\frac{1}{C_{s} } =\frac{1}{C_{1} } +\frac{1}{C_{2} } +\frac{1}{C_{3} }+............

\frac{1}{C_{s} } =\frac{1}{2} +\frac{1}{ 7.4} \\C_{s} =\frac{2*7.4}{2+7.4}=1.575 *10^-6 F\\

Capacitance of a series combination is given by:

C_{s}=\frac{Q}{V}

Then the charge stored in the series combination is:  

Q=C_{s} V

Energy stored in the series combination is:  

U_{c}=\frac{1}{2}  V^{2} C_{s}

<u>Solve the Problem:  </u>

Q=1.575*10^-6*9=1.42*10^-5C\\\\U_{c} =\frac{1}{2}*9^{2} *1.575*10^-6=6.38*10^-5J

<u>b)</u>

<u>Identify the unknown:  </u>

The charge and energy stored if the capacitors are connected in parallel  

<u>Set Up the Problem:  </u>

Capacitance of a parallel combination:

C_{p} =C_{1} +C_{2} +C_{3}

C_{p} =2+7.4=9.4*10^-6F

Capacitance of a parallel combination is given by

C_{p} =\frac{Q}{V}

Then the charge stored in the parallel combination is

Q=C_{p} V

Energy stored in the parallel combination is:  

U_{c}=\frac{1}{2} V^2C_{p}

<u>Solve the Problem: </u><em>  </em>

Q=9.4*10^-6*9=8.46*10^-5C\\\\U_{c} =\frac{1}{2}*9^{2} *9.4*10^-6=3.81*10^-4J

givi [52]3 years ago
5 0
<h2>Answer:</h2>

<em>(a) The charge and energy stored if the capacitors are connected to the battery in series are 14.13μC and 63.59μ J respectively.</em>

<em>(b) The charge and energy stored if the capacitors are connected to the battery in series are 84.6μC and 380.7μ J respectively.</em>

<em />

<h2>Explanation:</h2><h2></h2>

Given;

A 9.00V battery

A 2.00 μF capacitor (C_{1})

A 7.40 μF capacitor (C_{2})

(a) If the capacitors are connected in series, then different voltages pass across them and the total capacitance (C) is given by

\frac{1}{C} = \frac{1}{C_{1} } + \frac{1}{C_{2} }

Substituting for the values of C_{1} and C_{2} in the above equation gives;

=> \frac{1}{C} = \frac{1}{2} + \frac{1}{7.4}

=>  \frac{1}{C} = \frac{7.4 + 2}{7.4 * 2}

=> C = (7.4 x 2) / (7.4 + 2)

=> C = 1.57μF

(i) The charge (Q) stored is given by

Q = CV

Where;

V is the total voltage = 9.00V

C is the total capacitance = 1.57μF

Substituting for the values of V and C in the equation gives;

Q = 1.57μF x 9.00V

Q = 14.13μC

(ii) The energy (E) stored is given by

E = \frac{1}{2} x C x V^{2}

Substitute the values of V and C in the equation;

E = \frac{1}{2} x 1.57 x 9^{2}

E = 63.59μ J

<em>Therefore the charge and energy stored if the capacitors are connected to the battery in series are 14.13μC and 63.59μ J respectively.</em>

<em></em>

(b) If the capacitors are connected in series, then same voltage passes across them and the total capacitance (C) is given by;

C = C_{1} + C_{2}

Substituting for the values of C_{1} and C_{2} in the above equation gives;

=> C = 2 + 7.4

=> C = 9.4μF

(i) The charge (Q) stored is given by

Q = CV

Where;

V is the total voltage = 9.00V

C is the total capacitance = 9.4μF

Substituting for the values of V and C in the equation gives;

Q = 9.4μF x 9.00V

Q = 84.6μC

(ii) The energy (E) stored is given by

E = \frac{1}{2} x C x V^{2}

Substitute the values of V and C in the equation;

E = \frac{1}{2} x 9.4 x 9^{2}

E = 380.7μ J

<em>Therefore the charge and energy stored if the capacitors are connected to the battery in series are 84.6μC and 380.7μ J respectively.</em>

<em></em>

You might be interested in
Which basic principle influences how all HVACR systems work?
bezimeni [28]

Answer:

B) An increase in pressure can lower the boiling point of a liquid and change the temperature at which it turns to a gas.

Explanation:

B) An increase in pressure can lower the boiling point of a liquid and change the temperature at which it turns to a gas.

6 0
3 years ago
A Si sample contains 1016 cm-3 In acceptor atoms and a certain number of shallow donors, the In acceptor level is 0.16 eV above
creativ13 [48]

Answer:

6.5 × 10¹⁵/ cm³

Explanation:

Thinking process:

The relation N_{o} = N_{i} * \frac{E_{f}-E_{i}  }{KT}

With the expression Ef - Ei = 0.36 × 1.6 × 10⁻¹⁹

and ni = 1.5 × 10¹⁰

Temperature, T = 300 K

K = 1.38 × 10⁻²³

This generates N₀ = 1.654 × 10¹⁶ per cube

Now, there are 10¹⁶ per cubic centimeter

Hence, N_{d}  = 1.65*10^{16}  - 10^{16} \\           = 6.5 * 10^{15} per cm cube

5 0
3 years ago
Read 2 more answers
Using an "AND" and an "OR", list all information (Equipment Number, Equipment Type, Seat Capacity, Fuel Capacity, and Miles per
Tomtit [17]

Answer:

Explanation :

The given  information to be listed can are Equipment Number, Equipment Type, Seat Capacity, Fuel Capacity, and Miles per Gallon.

Check the attached document for the solution.

5 0
3 years ago
1. ELECTRICAL SHOCK
lions [1.4K]
Here’s some of them
6. J
7. I
10. O
13. F
14. E
15. N
3 0
3 years ago
A gas stream flowing at 1000 cfm with a particulate loading of 400 gr/ft3 discharges from a certain industrial plant through an
Makovka662 [10]

<u>Solution and Explanation:</u>

Volume of gas stream = 1000 cfm (Cubic Feet per Minute)

Particulate loading = 400 gr/ft3 (Grain/cubic feet)

1 gr/ft3 = 0.00220462 lb/ft3

Total weight of particulate matter = 1000 \mathrm{cfm} \times 400 \mathrm{gr} / \mathrm{tt} 3 \times .000142857 \mathrm{lb} / \mathrm{ft} 3 \times 60=3428.568 \mathrm{lb} / \mathrm{hr}

Cyclone is to 80 % efficient

So particulate remaining = 0.20 \times 3428.568 \mathrm{lb} / \mathrm{hr}=685.7136

emissions from this stack be limited to = 10.0 lb/hr

Particles to be remaining after wet scrubber = 10.0 lb/hr

So particles to be removed = 685.7136- 10 = 675.7136

Efficiency = output multiply with 100/input = 98.542 %

4 0
3 years ago
Other questions:
  • How does a carburetor work?
    7·1 answer
  • A closed system undergoes a process in which work is done on the system and the heat transfer Q occurs only at temperature Tb. F
    8·1 answer
  • Write a complete C++ program that is made of functions main() and rShift(). The rShift() function must be a function without ret
    7·1 answer
  • For the reactions of ketone body metabolism, _______.
    15·1 answer
  • For a bronze alloy, the stress at which plastic deformation begins is 266 MPa and the modulus of elasticity is105 GPa.
    15·1 answer
  • A city emergency management agency and a construction company have formed a public-private partnership. The construction company
    15·1 answer
  • How can you drop two eggs the feweHow can you drop two eggs the fewest amount of times, without them breaking? ...st amount of t
    13·2 answers
  • A 280 km long pipeline connects two pumping stations. It is desired to pump 0.56 m3/s of oil through a 0.62 m diameter line, the
    14·1 answer
  • In the construction of a timber-framed house, select and justify three timber based
    13·1 answer
  • Airbags may deploy in the<br> of the passenger or<br> driver, or from the<br> of the vehicle.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!