1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dimulka [17.4K]
2 years ago
13

Suppose you have a 9.00 V battery, a 2.00 μF capacitor, and a 7.40 μF capacitor. (a) Find the charge and energy stored if the ca

pacitors are connected to the battery in series. (b) Do the same for a parallel connection.
Engineering
2 answers:
Andru [333]2 years ago
5 0

Answer:

Q=1.575*10^-6*9=1.42*10^-5C\\\\U_{c} =\frac{1}{2}*9^{2} *1.575*10^-6=6.38*10^-5J

Q=9.4*10^-6*9=8.46*10^-5C\\\\U_{c} =\frac{1}{2}*9^{2} *9.4*10^-6=3.81*10^-4J

Explanation:

<u>a)</u>

<u>Identify the unknown:  </u>

The charge and energy stored if the capacitors are connected in series  

<u>List the Knowns: </u>

Capacitance of the first capacitor: C_{1}= 2цF = 2 x 10-6 F

Capacitance of the second capacitor C_{2}= 7.4цF  = 7.4 x 10-6 F

Voltage of battery: V = 9 V  

<u>Set Up the Problem:   </u>

Capacitance of a series combination:  

\frac{1}{C_{s} } =\frac{1}{C_{1} } +\frac{1}{C_{2} } +\frac{1}{C_{3} }+............

\frac{1}{C_{s} } =\frac{1}{2} +\frac{1}{ 7.4} \\C_{s} =\frac{2*7.4}{2+7.4}=1.575 *10^-6 F\\

Capacitance of a series combination is given by:

C_{s}=\frac{Q}{V}

Then the charge stored in the series combination is:  

Q=C_{s} V

Energy stored in the series combination is:  

U_{c}=\frac{1}{2}  V^{2} C_{s}

<u>Solve the Problem:  </u>

Q=1.575*10^-6*9=1.42*10^-5C\\\\U_{c} =\frac{1}{2}*9^{2} *1.575*10^-6=6.38*10^-5J

<u>b)</u>

<u>Identify the unknown:  </u>

The charge and energy stored if the capacitors are connected in parallel  

<u>Set Up the Problem:  </u>

Capacitance of a parallel combination:

C_{p} =C_{1} +C_{2} +C_{3}

C_{p} =2+7.4=9.4*10^-6F

Capacitance of a parallel combination is given by

C_{p} =\frac{Q}{V}

Then the charge stored in the parallel combination is

Q=C_{p} V

Energy stored in the parallel combination is:  

U_{c}=\frac{1}{2} V^2C_{p}

<u>Solve the Problem: </u><em>  </em>

Q=9.4*10^-6*9=8.46*10^-5C\\\\U_{c} =\frac{1}{2}*9^{2} *9.4*10^-6=3.81*10^-4J

givi [52]2 years ago
5 0
<h2>Answer:</h2>

<em>(a) The charge and energy stored if the capacitors are connected to the battery in series are 14.13μC and 63.59μ J respectively.</em>

<em>(b) The charge and energy stored if the capacitors are connected to the battery in series are 84.6μC and 380.7μ J respectively.</em>

<em />

<h2>Explanation:</h2><h2></h2>

Given;

A 9.00V battery

A 2.00 μF capacitor (C_{1})

A 7.40 μF capacitor (C_{2})

(a) If the capacitors are connected in series, then different voltages pass across them and the total capacitance (C) is given by

\frac{1}{C} = \frac{1}{C_{1} } + \frac{1}{C_{2} }

Substituting for the values of C_{1} and C_{2} in the above equation gives;

=> \frac{1}{C} = \frac{1}{2} + \frac{1}{7.4}

=>  \frac{1}{C} = \frac{7.4 + 2}{7.4 * 2}

=> C = (7.4 x 2) / (7.4 + 2)

=> C = 1.57μF

(i) The charge (Q) stored is given by

Q = CV

Where;

V is the total voltage = 9.00V

C is the total capacitance = 1.57μF

Substituting for the values of V and C in the equation gives;

Q = 1.57μF x 9.00V

Q = 14.13μC

(ii) The energy (E) stored is given by

E = \frac{1}{2} x C x V^{2}

Substitute the values of V and C in the equation;

E = \frac{1}{2} x 1.57 x 9^{2}

E = 63.59μ J

<em>Therefore the charge and energy stored if the capacitors are connected to the battery in series are 14.13μC and 63.59μ J respectively.</em>

<em></em>

(b) If the capacitors are connected in series, then same voltage passes across them and the total capacitance (C) is given by;

C = C_{1} + C_{2}

Substituting for the values of C_{1} and C_{2} in the above equation gives;

=> C = 2 + 7.4

=> C = 9.4μF

(i) The charge (Q) stored is given by

Q = CV

Where;

V is the total voltage = 9.00V

C is the total capacitance = 9.4μF

Substituting for the values of V and C in the equation gives;

Q = 9.4μF x 9.00V

Q = 84.6μC

(ii) The energy (E) stored is given by

E = \frac{1}{2} x C x V^{2}

Substitute the values of V and C in the equation;

E = \frac{1}{2} x 9.4 x 9^{2}

E = 380.7μ J

<em>Therefore the charge and energy stored if the capacitors are connected to the battery in series are 84.6μC and 380.7μ J respectively.</em>

<em></em>

You might be interested in
One kg of an idea gas is contained in one side of a well-insulated vessel at 800 kPa. The other side of the vessel is under vacu
laiz [17]

Answer:

Option C = internal energy stays the same.

Explanation:

The internal energy will remain the same or unchanged because this question has to do with a concept in physics or classical chemistry (in thermodynamics) known as Free expansion.

So, the internal energy will be equals to the multiplication of the change in temperature, the heat capacity (keeping volume constant) and the number of moles. And in free expansion the internal energy is ZERO/UNCHANGED.

Where, the internal energy, ∆U = 0 =quantity of heat, q - work,w.

The amount of heat,q = Work,w.

In the concept of free expansion the only thing that changes is the volume.

7 0
3 years ago
Im passed due someone help meeeeeee
vovangra [49]

Answer:

how are supposed to help when you can't do anything?

8 0
3 years ago
Read 2 more answers
The kinetic energy correction factor depends on the (shape — volume - mass) of the cross section Of the pipe and the (velocity —
butalik [34]

Answer:

The kinetic energy correction factor the depends on the shape of the cross section of the pipe and the velocity distribution.

Explanation:

The kinetic energy correction factor take into account that the velocity distribution over the pipe cross section is not uniform.  In that case, neither the pressure nor the temperature are involving and as we can notice, the velocity distribution depends only on the shape of the cross section.

3 0
3 years ago
To ensure that a vehicle crash is inelastic, vehicle safety designers add crumple zones to vehicles. A crumple zone is a part of
spin [16.1K]

Answer:

Explanation:

Answer: With crumple zones at the front and back of most cars, they absorb much of the energy (and force) in a crash by folding in on itself much like an accordion. ... As Newton's second law explains force = Mass x Acceleration this delay reduces the force that drivers and passengers feel in a crash.Sep 30, 2020

5 0
2 years ago
Identify the measurement shown in figure 7 and state in centimeters ​
Sav [38]

Answer:

1.3cm

Explanation:

the arrow is 3 lines past the 1 so it is 1.3cm

6 0
3 years ago
Other questions:
  • A pressure cylinder has an outer diameter 200 mm, maximum external pressure 4 MPa, and maximum allowable shear stress 27.5 MPa.
    13·1 answer
  • Give a reason why fighter aircraft use mid-wing design.
    11·1 answer
  • True or False? Duties of the company officials should be discussed
    11·1 answer
  • A structural component in the shape of a flat plate 29.6 mm thick is to be fabricated from a metal alloy for which the yield str
    11·1 answer
  • 3. Technician A says passive permanent
    5·1 answer
  • Which statement concerning symbols used on plans is true?
    10·1 answer
  • Describe two characteristics that bridges and skyscrapers have in common.
    10·1 answer
  • What is a beam on a bridge? what does it do?
    6·1 answer
  • 3. Sitúese en la época de los faraones en Egipto. Usted es el encargado de construir una de esas fabulosas pirámides que fueron
    11·1 answer
  • Write down about the water source selection criteria​
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!