1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dimulka [17.4K]
3 years ago
13

Suppose you have a 9.00 V battery, a 2.00 μF capacitor, and a 7.40 μF capacitor. (a) Find the charge and energy stored if the ca

pacitors are connected to the battery in series. (b) Do the same for a parallel connection.
Engineering
2 answers:
Andru [333]3 years ago
5 0

Answer:

Q=1.575*10^-6*9=1.42*10^-5C\\\\U_{c} =\frac{1}{2}*9^{2} *1.575*10^-6=6.38*10^-5J

Q=9.4*10^-6*9=8.46*10^-5C\\\\U_{c} =\frac{1}{2}*9^{2} *9.4*10^-6=3.81*10^-4J

Explanation:

<u>a)</u>

<u>Identify the unknown:  </u>

The charge and energy stored if the capacitors are connected in series  

<u>List the Knowns: </u>

Capacitance of the first capacitor: C_{1}= 2цF = 2 x 10-6 F

Capacitance of the second capacitor C_{2}= 7.4цF  = 7.4 x 10-6 F

Voltage of battery: V = 9 V  

<u>Set Up the Problem:   </u>

Capacitance of a series combination:  

\frac{1}{C_{s} } =\frac{1}{C_{1} } +\frac{1}{C_{2} } +\frac{1}{C_{3} }+............

\frac{1}{C_{s} } =\frac{1}{2} +\frac{1}{ 7.4} \\C_{s} =\frac{2*7.4}{2+7.4}=1.575 *10^-6 F\\

Capacitance of a series combination is given by:

C_{s}=\frac{Q}{V}

Then the charge stored in the series combination is:  

Q=C_{s} V

Energy stored in the series combination is:  

U_{c}=\frac{1}{2}  V^{2} C_{s}

<u>Solve the Problem:  </u>

Q=1.575*10^-6*9=1.42*10^-5C\\\\U_{c} =\frac{1}{2}*9^{2} *1.575*10^-6=6.38*10^-5J

<u>b)</u>

<u>Identify the unknown:  </u>

The charge and energy stored if the capacitors are connected in parallel  

<u>Set Up the Problem:  </u>

Capacitance of a parallel combination:

C_{p} =C_{1} +C_{2} +C_{3}

C_{p} =2+7.4=9.4*10^-6F

Capacitance of a parallel combination is given by

C_{p} =\frac{Q}{V}

Then the charge stored in the parallel combination is

Q=C_{p} V

Energy stored in the parallel combination is:  

U_{c}=\frac{1}{2} V^2C_{p}

<u>Solve the Problem: </u><em>  </em>

Q=9.4*10^-6*9=8.46*10^-5C\\\\U_{c} =\frac{1}{2}*9^{2} *9.4*10^-6=3.81*10^-4J

givi [52]3 years ago
5 0
<h2>Answer:</h2>

<em>(a) The charge and energy stored if the capacitors are connected to the battery in series are 14.13μC and 63.59μ J respectively.</em>

<em>(b) The charge and energy stored if the capacitors are connected to the battery in series are 84.6μC and 380.7μ J respectively.</em>

<em />

<h2>Explanation:</h2><h2></h2>

Given;

A 9.00V battery

A 2.00 μF capacitor (C_{1})

A 7.40 μF capacitor (C_{2})

(a) If the capacitors are connected in series, then different voltages pass across them and the total capacitance (C) is given by

\frac{1}{C} = \frac{1}{C_{1} } + \frac{1}{C_{2} }

Substituting for the values of C_{1} and C_{2} in the above equation gives;

=> \frac{1}{C} = \frac{1}{2} + \frac{1}{7.4}

=>  \frac{1}{C} = \frac{7.4 + 2}{7.4 * 2}

=> C = (7.4 x 2) / (7.4 + 2)

=> C = 1.57μF

(i) The charge (Q) stored is given by

Q = CV

Where;

V is the total voltage = 9.00V

C is the total capacitance = 1.57μF

Substituting for the values of V and C in the equation gives;

Q = 1.57μF x 9.00V

Q = 14.13μC

(ii) The energy (E) stored is given by

E = \frac{1}{2} x C x V^{2}

Substitute the values of V and C in the equation;

E = \frac{1}{2} x 1.57 x 9^{2}

E = 63.59μ J

<em>Therefore the charge and energy stored if the capacitors are connected to the battery in series are 14.13μC and 63.59μ J respectively.</em>

<em></em>

(b) If the capacitors are connected in series, then same voltage passes across them and the total capacitance (C) is given by;

C = C_{1} + C_{2}

Substituting for the values of C_{1} and C_{2} in the above equation gives;

=> C = 2 + 7.4

=> C = 9.4μF

(i) The charge (Q) stored is given by

Q = CV

Where;

V is the total voltage = 9.00V

C is the total capacitance = 9.4μF

Substituting for the values of V and C in the equation gives;

Q = 9.4μF x 9.00V

Q = 84.6μC

(ii) The energy (E) stored is given by

E = \frac{1}{2} x C x V^{2}

Substitute the values of V and C in the equation;

E = \frac{1}{2} x 9.4 x 9^{2}

E = 380.7μ J

<em>Therefore the charge and energy stored if the capacitors are connected to the battery in series are 84.6μC and 380.7μ J respectively.</em>

<em></em>

You might be interested in
A tank with a volume of 8 m3 containing 4 m3 of 20% (by volume) NaOH solution is to be purged by adding pure water at a rate of
lawyer [7]

Answer:

The time necessary to purge 95% of the NaOH is 0.38 h

Explanation:

Given:

vfpure water(i) = 3 m³/h

vNaOH = 4 m³

xNaOH = 0.2

vfpure water(f) = 2 m³/h

pwater = 1000 kg/m³

pNaOH = 1220 kg/m³

The mass flow rate of the water is = 3 * 1000 = 3000 kg/h

The mass of NaOH in the solution is = 0.2 * 4 * 1220 = 976 kg

When the 95% of the NaOH is purged, thus the NaOH in outlet is = 0.95 * 976 = 927.2 kg

The volume of NaOH in outlet after time is = 927.2/1220 = 0.76 m³

The time required to purge the 95% of the NaOH is = 0.76/2 = 0.38 h

4 0
4 years ago
A program contains the following function definition: int cube(int number) { return number * number * number; } Write a stateme
Nonamiya [84]

Answer:

The statement can be written as

int result = cube(4);

Explanation:

A function is a block of reusable codes to perform some tasks. For example, the function in the question is to calculate the cube of a number.

A function can also operate on one or more input value (argument) and return a result. The <em>cube </em>function in the question accept one input value through its parameter <em>number </em>and the <em>number</em> will be multiplied by itself twice and return the result.  

To call a function, just simply write the function name followed with parenthesis (e.g. <em>cube()</em>). Within the parenthesis, we can include zero or one or more than one values as argument(s) (e.g. <em>cube(4)</em>).

We can then use the "=" operator to assign the return output of the function to a variable (e.g. <em>int result = cube(4)</em>)

8 0
4 years ago
A satellite at a distance of 36,000 km from an earth station radiates a power of 10 W from an
notsponge [240]
This an example solved please follow up with they photo I sent ok

4 0
3 years ago
Free brainlist because im new and i just want to but you have t friend me first
Amiraneli [1.4K]
Okay sure.









I’ll 1)chords
2)pulse
3)aerophone
4) the answer is C
5)rhythm

Pretty sure those are the answers
4 0
3 years ago
Consider a regenerative gas-turbine power plant with two stages of compression and two stages of expansion. The overall pressure
iris [78.8K]

Answer: the minimum mass flow rate of air required to generate a power output of 105 MW is 238.2 kg/s

Explanation:

from the T-S diagram, we get the overall pressure ratio of the cycle is 9

Calculate the pressure ratio in each stage of compression and expansion. P1/P2 = P4/P3  = √9 = 3

P5/P6 = P7/P8  = √9 =3  

get the properties of air from, "TABLE A-17 Ideal-gas properties of air", in the text book.

At temperature T1 =300K

Specific enthalpy of air h1 = 300.19 kJ/kg

Relative pressure pr1 = 1.3860  

At temperature T5 = 1200 K

Specific enthalpy h5 = 1277.79 kJ/kg

Relative pressure pr5 = 238  

Calculate the relative pressure at state 2

Pr2 = (P2/P1) Pr5

Pr2 =3 x 1.3860 = 4.158  

get the two values of relative pressure between which the relative pressure at state 2 lies and take the corresponding values of specific enthalpy from, "TABLE A-17 Ideal-gas properties of air", in the text book.  

Relative pressure pr = 4.153

The corresponding specific enthalpy h = 411.12 kJ/kg  

Relative pressure pr = 4.522

The corresponding specific enthalpy h = 421.26 kJ/kg  

Find the specific enthalpy of state 2 by the method of interpolation

(h2 - 411.12) / ( 421.26 - 411.12) =  

(4.158 - 4.153) / (4.522 - 4.153 )

h2 - 411.12 = (421.26 - 411.12) ((4.158 - 4.153) / (4.522 - 4.153))  

h2 - 411.12 = 0.137

h2 = 411.257kJ/kg  

Calculate the relative pressure at state 6.

Pr6 = (P6/P5) Pr5

Pr6 = 1/3 x 238 = 79.33  

Obtain the two values of relative pressure between which the relative pressure at state 6 lies and take the corresponding values of specific enthalpy from, "TABLE A-17 Ideal-gas properties of air", in the text book.  

Relative pressure Pr = 75.29

The corresponding specific enthalpy h = 932.93 kJ/kg  

Relative pressure pr = 82.05

The corresponding specific enthalpy h = 955.38 kJ/kg  

Find the specific enthalpy of state 6 by the method of interpolation.

(h6 - 932.93) / ( 955.38 - 932.93) =  

(79.33 - 75.29) / ( 82.05 - 75.29 )

(h6 - 932.93) = ( 955.38 - 932.93) ((79.33 - 75.29) / ( 82.05 - 75.29 )

h6 - 932.93 = 13.427

h6 = 946.357 kJ/kg

Calculate the total work input of the first and second stage compressors

(Wcomp)in = 2(h2 - h1 ) = 2( 411.257 - 300.19 )

= 222.134 kJ/kg  

Calculate the total work output of the first and second stage turbines.

(Wturb)out = 2(h5 - h6) = 2( 1277.79 - 946.357 )

= 662.866 kJ/kg  

Calculate the net work done

Wnet = (Wturb)out  - (Wcomp)in

= 662.866 - 222.134

= 440.732 kJ/kg  

Calculate the minimum mass flow rate of air required to generate a power output of 105 MW

W = m × Wnet

(105 x 10³) kW = m(440.732 kJ/kg)

m = (105 x 10³) / 440.732

m = 238.2 kg/s

therefore the minimum mass flow rate of air required to generate a power output of 105 MW is 238.2 kg/s

4 0
3 years ago
Other questions:
  • Please help me with this question​
    8·1 answer
  • The device whose operation closely matches the way the clamp-on ammeter works is
    8·1 answer
  • Which definition best fits the idea of electrical resistance in a wire? A. the decrease in current flow due to electrons collidi
    12·1 answer
  • In sleep, what does REM stand for?
    10·1 answer
  • When must an Assured Equipment Grounding Conductor Program (AEGCP) be in place?
    10·1 answer
  • Tony works as a Sorter in a processing factory. Which qualifications does he most likely have?
    10·2 answers
  • Explain why veracity, value, and visualization can also be said to apply to relational databases as well as Big Data.
    6·1 answer
  • Which option identifies the type of engineering technician most likely to be involved in the following scenario?
    9·1 answer
  • The design-bid-build model is prons to abuse because separation of phases facilitates the hiding of corrupt practices.
    7·2 answers
  • The Imager for Mars Pathfinder (IMP) is an imaging system. It has two camera channels. Each channel has color capability. This i
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!