Answer:
(FeSCN⁺²) = 0.11 mM
Explanation:
Fe ( NO3)3 (aq) [0.200M] + KSCN (aq) [ 0.002M] ⇒ FeSCN+2
M (Fe(NO₃)₃ = 0.200 M
V (Fe(NO₃)₃ = 10.63 mL
n (Fe(NO₃)₃ = 0.200*10.63 = 2.126 mmol
M (KSCN) = 0.00200 M
V (KSCN) = 1.42 mL
n (KSCN) = 0.00200 * 1.42 = 0.00284 mmol
Total volume = V (Fe(NO₃)₃ + V (KSCN)
= 10.63 + 1.42
= 12.05 mL
Limiting reactant = KSCN
So,
FeSCN⁺² = 0.00284 mmol
M (FeSCN⁺²) = 0.00284/12.05
= 0.000236 M
Excess reactant = (Fe(NO₃)₃
n(Fe(NO₃)₃ = 2.126 mmol - 0.00284 mmol
=2.123 mmol
For standard 2:
n (FeSCN⁺²) = 0.000236 * 4.63
=0.00109
V(standard 2) = 4.63 + 5.17
= 9.8 mL
M (FeSCN⁺²) = 0.00109/9.8
= 0.000111 M = 0.11 mM
Therefore, (FeSCN⁺²) = 0.11 mM
Answer:
Answer is D
Explanation:
an increase in the number of protons
Answer: when reactants and products are gases at STP.
Justification:
1) STP stands for standard temperature (0°) and pressure (1 atm).
2) According to the kinetic molecular theory of the gases, and as per Avogadro's principle, equal volumes of gases, at the same temperature and pressure, have the same number of molecules.
3) Since the coefficients in a balanced chemical equation represent number of moles, when reactants and products are gases at the same temperature and pressure, the mole ratios are the same that the volume ratios, and then the coefficients of the chemical equation represent the volume ratios.
3NF3 + 5H2O → HNO3 + 2NO + 9HF
Nitrogen fluoride reacts with water to produce nitric acid, nitric oxide, and hydrogen fluoride. The reaction slowly takes place in a boiling solution.
CH2CH2 + H2O → CH3CH2OH
Ethylene is a hydrocarbon with water that creates ethanol and ethanol is an alcohol
Answer:
Explanation:
crystallization The crystallization temperature of a brine is the temperature at which a solid phase begins to form, resulting in a mixture of solid particles and solution. These solids may be salt crystals or water crystals (ice). It is the point at which the minimumcrystallization temperature can be realized