Answer:
Structures are given below.
Explanation:
- Treatment of 2-bromo-2-methylbutane with KOH in ethanol will give elimination of HBr through E2 mechanism.
- H atoms adjacent to Br will be eliminated.
- 2-bromo-2-methylbutane has two possible adjacent H atoms that can be eliminated giving mixture of products.
- Product of this elimination reaction is alkene. Here saytzeff fule is followed during elimination. So most substituted alkene will be major product.
- Structure of alkenes are given below.
Answer:
The correct option is B
Explanation:
One of the claims of John Dalton's atomic theory is that atom is the smallest unit of matter (which suggests that there are no particles smaller than an atom in any matter). This claim has been disproved by the modern atomic theory which established that there are particles smaller than atom (called subatomic particles). These particles are electrons, protons and neutrons.
One of the modern atomic theory was by Neils Bohr, who proposed that <u>electrons move in circular orbits around the central nucleus</u>. Thus, the electrons of iron can also be said to be present in a region of space (circular path) around the nucleus. This proves that option B is the correct option as John Dalton's theory did not even recognize the electron(s) nor the nucleus.
They will most likely make a table, or some sort of graphing chart
CxHy + O2 --> x CO2 + y/2 H2O
Find the moles of CO2 : 18.9g / 44 g/mol = .430 mol CO2 = .430 mol of C in compound
Find the moles of H2O: 5.79g / 18 g/mol = .322 mol H2O = .166 mol of H in compound
Find the mass of C and H in the compound:
.430mol x 12 = 5.16 g C
.166mol x 1g = .166g H
When you add these up they indicate a mass of 5.33 g for the compound, not 5.80g as you stated in the problem.
Therefore it is likely that either the mass of the CO2 or the mass of H20 produced is incorrect (most likely a typo).
In any event, to find the formula, you would take the moles of C and H and convert to a whole number ratio (this is usually done by dividing both of them by the smaller value).
Balance Chemical Equation is as follow,
<span> Cu + 2 AgNO</span>₃ → 2 Ag + Cu(NO₃)₂
According to Balance Equation,
2 Moles of Ag is produced by reacting = 1 Mole of Cu
So,
0.854 Moles of Ag will be produced by reacting = X Moles of Cu
Solving for X,
X = (0.854 mol × 1 mol) ÷ 2 mol
X = 0.427 Moles of Cu
Result:
0.854 Moles of Ag are produced by reacting 0.427 Moles of Cu.