Answer:
B only
Explanation:
Squeeze-type resistance spot welding (STRSW)is a type of electric resistance welding that brings about the weld on interfacing sheet metal pieces through which heat generated from electric resistance bring about fusion and welding of the two pieces together
Therefore, it is not meant for opening but joints but it can be used for making replacement spot welds adjacent to the original spot weld due to the smaller heat affected zone (HAZ) created by the STRSW process.
Answer:
Time =t2=58.4 h
Explanation:
Since temperature is the same hence using condition
x^2/Dt=constant
where t is the time as temperature so D also remains constant
hence
x^2/t=constant
2.3^2/11=5.3^2/t2
time=t^2=58.4 h
Answer:
The answer is below
Explanation:
a) The weight of the combined system is the sum of the weight of the water and the weight of the tank

b) Since the weight of a system can be divided into smaller portions, hence weight is an extensive property.
c) When analyzing the acceleration of gases as they flow through a nozzle, the geometry of the nozzle which is an open system can be chosen as our system.
d) Given that:

Answer:
<em>The temperature will be greater than 25°C</em>
Explanation:
In an adiabatic process, heat is not transferred to or from the boundary of the system. The gain or loss of internal heat energy is solely from the work done on the system, or work done by the system. The work done on the system by the environment adds heat to the system, and work done by the system on its environment takes away heat from the system.
mathematically
Change in the internal energy of a system ΔU = ΔQ + ΔW
in an adiabatic process, ΔQ = 0
therefore
ΔU = ΔW
where ΔQ is the change in heat into the system
ΔW is the work done by or done on the system
when work is done on the system, it is conventionally negative, and vice versa.
also W = pΔv
where p is the pressure, and
Δv = change in volume of the system.
In this case,<em> work is done on the gas by compressing it from an initial volume to the new volume of the cylinder. The result is that the temperature of the gas will rise above the initial temperature of 25°C </em>
Answer:
The rate of entropy change of the air is -0.10067kW/K
Explanation:
We'll assume the following
1. It is a steady-flow process;
2. The changes in the kinetic energy and the potential energy are negligible;
3. Lastly, the air is an ideal gas
Energy balance will be required to calculate heat loss;
mh1 + W = mh2 + Q where W = Q.
Also note that the rate of entropy change of the air is calculated by calculating the rate of heat transfer and temperature of the air, as follows;
Rate of Entropy Change = -Q/T
Where Q = 30Kw
T = Temperature of air = 25°C = 298K
Rate = -30/298
Rate = -0.100671140939597 KW/K
Rate = -0.10067kW/K
Hence, the rate of entropy change of the air is -0.10067kW/K