<u>Answer:</u> The amount of energy released per gram of
is -71.92 kJ
<u>Explanation:</u>
For the given chemical reaction:

The equation used to calculate enthalpy change is of a reaction is:
![\Delta H^o_{rxn}=\sum [n\times \Delta H^o_f_{(product)}]-\sum [n\times \Delta H^o_f_{(reactant)}]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28product%29%7D%5D-%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28reactant%29%7D%5D)
The equation for the enthalpy change of the above reaction is:
![\Delta H^o_{rxn}=[(5\times \Delta H^o_f_{(B_2O_3(s))})+(9\times \Delta H^o_f_{(H_2O(l))})]-[(2\times \Delta H^o_f_{(B_5H_9(l))})+(12\times \Delta H^o_f_{(O_2(g))})]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B%285%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28B_2O_3%28s%29%29%7D%29%2B%289%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28H_2O%28l%29%29%7D%29%5D-%5B%282%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28B_5H_9%28l%29%29%7D%29%2B%2812%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28O_2%28g%29%29%7D%29%5D)
Taking the standard enthalpy of formation:

Putting values in above equation, we get:
![\Delta H^o_{rxn}=[(5\times (1271.94))+(9\times (-285.83))]-[(2\times (73.2))+(12\times (0))]\\\\\Delta H^o_{rxn}=-9078.57kJ](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B%285%5Ctimes%20%281271.94%29%29%2B%289%5Ctimes%20%28-285.83%29%29%5D-%5B%282%5Ctimes%20%2873.2%29%29%2B%2812%5Ctimes%20%280%29%29%5D%5C%5C%5C%5C%5CDelta%20H%5Eo_%7Brxn%7D%3D-9078.57kJ)
We know that:
Molar mass of pentaborane -9 = 63.12 g/mol
By Stoichiometry of the reaction:
If 2 moles of
produces -9078.57 kJ of energy.
Or,
If
of
produces -9078.57 kJ of energy
Then, 1 gram of
will produce =
of energy.
Hence, the amount of energy released per gram of
is -71.92 kJ
Answer:
Carboxyl, primary amine, amide, ester, and phenyl.
Explanation:
The functional groups present in the compound of aspartame are carboxyl, primary amine, amide, ester, and phenyl. Aspartame is an artificial non-saccharide sweetener which is 200 times sweeter than sucrose. This aspartame is commonly used as a sugar substitute in many foods and beverages. It has the trade names such as NutraSweet, Equal, and Canderel.
Answer:
Enzyme is carbonic anhydrase
Substrate is 
Turnover number is 
Explanation:
An enzyme is used by a living organism as a catalyst to perform a specific biochemical reaction.
A substrate is a molecule upon which an enzyme acts.
Turnover number refers to the number of substrate molecules transformed by a single enzyme molecule per minute. Here, the enzyme is the rate-limiting factor.
Here,
Enzyme is carbonic anhydrase
Substrate is 
Turnover number is 
<span>3 elements
Nitrogen
Hydrogen
Oxygen
2 nitrogen 4 hydrogen and 3 oxygens
there are only 3 different elements</span>