Answer:
So, you're going to need the equation ρ = ρo [1 + α(T-To)]
1.59x10^-8 ohms*m is your ρo because that is measured at your reference temperature (To), 20◦C. T is your 6◦C and α is 0.0038(◦C)−1. So, using that you solve for ρ. If you keep up with the units though, you notice it comes out to be ohms*m and that isn't what you want.
So, the next equation you need is J=σE where E is your electric field (3026 V/m) and σ is the electrical conductivity which is the inverse of your answer you got in the previous equation. So find the inverse of that answer and multiply it by your electric field and that will give you the current density.
I hope this helps!
Explanation:
Answer:
the thermal energy generated in the loop = 
Explanation:
Given that;
The length of the copper wire L = 0.614 m
Radius of the loop r = 
r = 
r = 0.0977 m
However , the area of the loop is :



Change in the magnetic field is 
Then the induced emf e = 
e = 
e = 2.74 × 10⁻³ V
resistivity of the copper wire
Ω m
diameter of the wire = 1.08 mm
radius of the wire = 0.54 mm = 0.54 × 10⁻³ m
Thus, the resistance of the wire R = 
R = 
R = 1.13× 10⁻² Ω
Finally, the thermal energy generated in the loop (i.e the power) = 
= 
= 
Causes of a severe storm are:
High winds
wildfires
hail
A severe thunderstorm includes winds of 58 MPH or greater
Ha! Lot of words but the question itself is easy.
The answer is 2.5 times 10 to the 5th power.
The main part of the numbers has the decimal point placed after the first digit.
Then for what number of power, you just count the number of decimal places moved.
I hope this helps you.