When the substance are moved close together and they move more quickly they get compressed.
Answer:
9.73 x 10⁻¹⁰ m
Explanation:
According to Heisenberg uncertainty principle
Uncertainty in position x uncertainty in momentum ≥ h / 4π
Δ X x Δp ≥ h / 4π
Δp = mΔV
ΔV = Uncertainty in velocity
= 2 x 10⁻⁶ x 3 / 100
= 6 x 10⁻⁸
mass m = 0.9 x 10⁻¹⁵ x 10⁻³ kg
m = 9 x 10⁻¹⁹
Δp = mΔV
= 9 x 10⁻¹⁹ x 6 x 10⁻⁸
= 54 x 10⁻²⁷
Δ X x Δp ≥ h / 4π
Δ X x 54 x 10⁻²⁷ ≥ h / 4π
Δ X = h / 4π x 1 / 54 x 10⁻²⁷
= 
= 9.73 x 10⁻¹⁰ m
Answer:

Explanation:
We are given that a parallel- plate capacitor is charged to a potential difference V and then disconnected from the voltage source.
1 m =100 cm
Surface area =S=


We have to find the charge Q on the positive plates of the capacitor.
V=Initial voltage between plates
d=Initial distance between plates
Initial Capacitance of capacitor

Capacitance of capacitor after moving plates


Potential difference between plates after moving








Hence, the charge on positive plate of capacitor=
Answer:
K = -½U
Explanation:
From Newton's law of gravitation, the formula for gravitational potential energy is;
U = -GMm/R
Where,
G is gravitational constant
M and m are the two masses exerting the forces
R is the distance between the two objects
Now, in the question, we are given that kinetic energy is;
K = GMm/2R
Re-rranging, we have;
K = ½(GMm/R)
Comparing the equation of kinetic energy to that of potential energy, we can derive that gravitational kinetic energy can be expressed in terms of potential energy as;
K = -½U
The discovery which Carnot made was that THE DIFFERENCE IN THE TEMPERATURES BETWEEN THE HOT AND THE COLD RESERVOIRS DETERMINE HOW WELL A HEAT ENGINE WOULD WORK.
Sadi Carnot was a French engineer, He proposed a theoretical thermodynamic cycle in 1824. In his cycle, Said hold that the efficiency of a heat engine depends on the temperature difference between its hot reservoir and cold reservoir.