Answer:
Explanation:
Hello,
Let's get the data for this question before proceeding to solve the problems.
Mass of flywheel = 40kg
Speed of flywheel = 590rpm
Diameter = 75cm , radius = diameter/ 2 = 75 / 2 = 37.5cm.
Time = 30s = 0.5 min
During the power off, the flywheel made 230 complete revolutions.
∇θ = [(ω₂ + ω₁) / 2] × t
∇θ = [(590 + ω₂) / 2] × 0.5
But ∇θ = 230 revolutions
∇θ/t = (530 + ω₂) / 2
230 / 0.5 = (530 + ω₂) / 2
Solve for ω₂
460 = 295 + 0.5ω₂
ω₂ = 330rpm
a)
ω₂ = ω₁ + αt
but α = ?
α = (ω₂ - ω₁) / t
α = (330 - 590) / 0.5
α = -260 / 0.5
α = -520rev/min
b)
ω₂ = ω₁ + αt
0 = 590 +(-520)t
520t = 590
solve for t
t = 590 / 520
t = 1.13min
60 seconds = 1min
X seconds = 1.13min
x = (60 × 1.13) / 1
x = 68seconds
∇θ = [(ω₂ + ω₁) / 2] × t
∇θ = [(590 + 0) / 2] × 1.13
∇θ = 333.35 rev/min
Answer:
Cycles per second is dependent on the construction of the alternator and the 120 volts is dependent upon the current and resistance in the circuit according to the ohms law.
Explanation:
We are given with AC of 120 volts, 20 amperes and 60 hertz frequency.
<u>According to the Ohm's law, we find its resistance:</u>



So, this 6 ohm resistance controls the current controls the magnitude of the AC current, while the frequency of the current remains constant and depends upon the construction and rotational speed of the armature of the alternator producing the current.
Here the value of frequency is the number of times the current changes its direction or the polarity in one second.
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions here.
Below is the solution:
W done by Normal = 0. (make the incline flat, Normal force goes directly up: no work done)
<span>W done by gravity = w*displacement = (11kg*9.8) * 7.5sin(35) = -463J </span>
<span>W done by friction is the opposite of the work done by weight because the object is not moving. Therefore W done by friction = 463J</span>
Answer:
2,4,5 are the answers
Explanation:
sky diver suit, helicopter and feather hAVE an external force pushing or floating them
An interesting problem, and thanks to the precise heading you put for the question.
We will assume zero air resistance.
We further assume that the angle with vertical is t=53.13 degrees, corresponding to sin(t)=0.8, and therefore cos(t)=0.6.
Given:
angle with vertical, t = 53.13 degrees
sin(t)=0.8; cos(t)=0.6;
air-borne time, T = 20 seconds
initial height, y0 = 800 m
Assume g = -9.81 m/s^2
initial velocity, v m/s (to be determined)
Solution:
(i) Determine initial velocity, v.
initial vertical velocity, vy = vsin(t)=0.8v
Using kinematics equation,
S(T)=800+(vy)T+(1/2)aT^2 ....(1)
Where S is height measured from ground.
substitute values in (1): S(20)=800+(0.8v)T+(-9.81)T^2 =>
v=((1/2)9.81(20^2)-800)/(0.8(20))=72.625 m/s for T=20 s
(ii) maximum height attained by the bomb
Differentiate (1) with respect to T, and equate to zero to find maximum
dS/dt=(vy)+aT=0 =>
Tmax=-(vy)/a = -0.8*72.625/(-9.81)= 5.9225 s
Maximum height,
Smax
=S(5.9225)
=800+(0.8*122.625)*(5.9225)+(1/2)(-9.81)(5.9225^2)
= 972.0494 m
(iii) Horizontal distance travelled by the bomb while air-borne
Horizontal velocity = vx = vcos(t) = 0.6v = 43.575 m/s
Horizontal distace travelled, Sx = (vx)T = 43.575*20 = 871.5 m
(iv) Velocity of the bomb when it strikes ground
vertical velocity with respect to time
V(T) =vy+aT...................(2)
Substitute values, vy=58.1 m/s, a=-9.81 m/s^2
V(T) = 58.130 + (-9.81)T =>
V(20)=58.130-(9.81)(20) = -138.1 m/s (vertical velocity at strike)
vx = 43.575 m/s (horizontal at strike)
resultant velocity = sqrt(43.575^2+(-138.1)^2) = 144.812 m/s (magnitude)
in direction theta = atan(43.575,138.1)
= 17.5 degrees with the vertical, downward and forward. (direction)