Answer:
a)15 N
b)12.6 N
Explanation:
Given that
Weight of block (wt)= 21 N
μs = 0.80 and μk = 0.60
We know that
Maximum value of static friction given as
Frs = μs m g = μs .wt
by putting the values
Frs= 0.8 x 21 = 16.8 N
Value of kinetic friction
Frk= μk m g = μk .wt
By putting the values
Frk= 0.6 x 21 = 12.6 N
a)
When T = 15 N
Static friction Frs= 16.8 N
Here the value of static friction is more than tension T .It means that block will not move and the value of friction force will be equal to the tension force.
Friction force = 15 N
b)
When T= 35 N
Here value of tension force is more than maximum value of static friction that is why block will move .We know that when body is in motion then kinetic friction will act on the body.so the value of friction force in this case will be 12.6 N
Friction force = 12.6 N
Crushing pressure. Human bodies are used to air pressure. The air pressure in our lungs, ears and stomachs is the same as the air pressure outside of our bodies, which ensures that we don't get crushed. Our bodies are also flexible enough to cope when the internal and external pressures aren't exactly the same.
9 because speed=distance/ time
Answer:
B = 4.1*10^-3 T = 4.1mT
Explanation:
In order to calculate the strength of the magnetic field, you use the following formula for the magnetic flux trough a surface:
(1)
ФB: magnetic flux trough the circular surface = 6.80*10^-5 T.m^2
S: surface area of the circular plate = π.r^2
r: radius of the circular plate = 8.50cm = 0.085m
B: magnitude of the magnetic field = ?
α: angle between the direction of the magnetic field and the normal to the surface area of the circular plate = 43.0°
You solve the equation (1) for B, and replace the values of the other parameters:

The strength of the magntetic field is 4.1mT