Explanation:
First, simplify the circuit. Then calculate the parallel and consecutive resistances to find the answer.
The answer would be stage of<span> conversion of Hydrogen to Helium.
At the end of this phase, the helium content of the suns will have the popping effect where more and more helium is now on the core resulting to higher temp and density as helium converted from hydrogen is much heavier.</span>
Answer:
The magnetic force points in the positive z-direction, which corresponds to the upward direction.
Option 2 is correct, the force points in the upwards direction.
Explanation:
The magnetic force on any charge is given as the cross product of qv and B
F = qv × B
where q = charge on the ball thrown = +q (Since it is positively charged)
v = velocity of the charged ball = (+vî) (velocity is in the eastern direction)
B = Magnetic field = (+Bj) (Magnetic field is in the northern direction; pointing forward)
F = qv × B = (+qvî) × (Bj)
F =
| î j k |
| qv 0 0|
| 0 B 0
F = i(0 - 0) - j(0 - 0) + k(qvB - 0)
F = (qvB)k N
The force is in the z-direction.
We could also use the right hand rule; if we point the index finger east (direction of the velocity), the middle finger northwards (direction of the magnetic field), the thumb points in the upward direction (direction of the magnetic force). Hence, the magnetic force is acting upwards, in the positive z-direction too.
Hope this Helps!!!
Answer:
R = 98304.75 m = 98.3 km
Explanation:
The density of an object is given as the ratio between the mass of that object and the volume occupied by that object.
Density = Mass/Volume
Now, it is given that the density of Earth has become:
Density = 1 x 10⁹ kg/m³
Mass = Mass of Earth (Constant) = 5.97 x 10²⁴ kg
Volume = 4/3πR³ (Volume of Sphere)
R = Radius of Earth = ?
Therefore,
1 x 10⁹ kg/m³ = (5.97 x 10²⁴ kg)/[4/3πR³]
4/3πR³ = (5.97 x 10²⁴ kg)/(1 x 10⁹ kg/m³)
R³ = (3/4)(5.97 x 10¹⁵ m³)/π
R = ∛[0.95 x 10¹⁵ m³]
<u>R = 98304.75 m = 98.3 km</u>
If the resistance of the Air is ignored, we can use the theory given by Galileo in which he warned that the thermal velocity of a body in free fall was given by

Where
g = Gravitational acceleration
t = time
As we can see the speed of objects in free fall is indifferent to the position that is launched (as long as the resistance of the air is ignored) or its mass.
Both bodies will end with the same thermal speed.