Explanation:
The mass of an object is a measure of the object's inertial property, or the amount of matter it contains. The weight of an object is a measure of the force exerted on the object by gravity, or the force needed to support it. The pull of gravity on the earth gives an object a downward acceleration of about 9.8 m/s2.
Answer:
c.
Explanation:
it moves in slow convection currents, hope this helps!
Answer: Heyo Kenji Here! Here's your answer- In a fat molecule, the fatty acids are attached to each of the three carbons of the glycerol molecule with an ester bond through the oxygen atom. During the ester bond formation, three molecules are released. Since fats consist of three fatty acids and a glycerol, they are also called triacylglycerols or triglycerides.
Explanation: Hope this helps!
Have a nice day!
- Kenji ^^
Answer:
The lock-and-key model:
c. Enzyme active site has a rigid structure complementary
The induced-fit model:
a. Enzyme conformation changes when it binds the substrate so the active site fits the substrate.
Common to both The lock-and-key model and The induced-fit model:
b. Substrate binds to the enzyme at the active site, forming an enzyme-substrate complex.
d. Substrate binds to the enzyme through non-covalent interactions
Explanation:
Generally, the catalytic power of enzymes are due to transient covalent bonds formed between an enzyme's catalytic functional group and a substrate as well as non-covalent interactions between substrate and enzyme which lowers the activation energy of the reaction. This applies to both the lock-and-key model as well as induced-fit mode of enzyme catalysis.
The lock and key model of enzyme catalysis and specificity proposes that enzymes are structurally complementary to their substrates such that they fit like a lock and key. This complementary nature of the enzyme and its substrates ensures that only a substrate that is complementary to the enzyme's active site can bind to it for catalysis to proceed. this is known as the specificity of an enzyme to a particular substrate.
The induced-fit mode proposes that binding of substrate to the active site of an enzyme induces conformational changes in the enzyme which better positions various functional groups on the enzyme into the proper position to catalyse the reaction.
The molarity of KOH is 0.1055 M
<u><em> calculation</em></u>
Step 1: write the equation for reaction between H₂C₂O₄.2H₂O and KOH
H₂C₂O₄.2H₂O + 2 KOH → K₂C₂O₄ +4 H₂O
step 2: find the moles of H₂C₂O₄.2H₂O
moles = mass÷ molar mass
from periodic table the molar mass H₂C₂O₄.2H₂O= (1 x2) +(12 x2) +(16 x4) + 2(18)=126 g/mol
= 0.2000 g ÷ 126 g/mol =0.00159 moles
step 3: use the mole ratio to calculate the moles of KOH
H₂C₂O₄.2H₂O : KOH is 1:2
therefore the moles of KOH =0.00159 x 2 = 0.00318 moles
step 4: find molarity of KOH
molarity = moles/volume in liters
volume in liters = 30.12/1000=0.03012 L
molarity is therefore = 0.00318/0.03012 =0.1055 M