Answer:
Classification will be Potassium, Bromine, and Argon
Explanation:
- Potassium is more likely to lose electrons and form positive ion
- Bromine actually gain electrons and forms negative ion
- Argon does not lose or gain electrons
Answer:
a) C4H6+2H2=C4H10
b) 4Na+CF4=4NaF+C
c) 2Na+2NH3=2NaNH2+H2
d) 2H202=2H2O+O2
Explanation:
Try and make sure there is the same number of reactants as products
Answer : (b) The rate law expression for the reaction is:
![\text{Rate}=k[SO_2]^2[O_2]](https://tex.z-dn.net/?f=%5Ctext%7BRate%7D%3Dk%5BSO_2%5D%5E2%5BO_2%5D)
Explanation :
Rate law : It is defined as the expression which expresses the rate of the reaction in terms of molar concentration of the reactants with each term raised to the power their stoichiometric coefficient of that reactant in the balanced chemical equation.
The general reaction is:

The general rate law expression for the reaction is:
![\text{Rate}=k[A]^a[B]^b](https://tex.z-dn.net/?f=%5Ctext%7BRate%7D%3Dk%5BA%5D%5Ea%5BB%5D%5Eb)
where,
a = order with respect to A
b = order with respect to B
R = rate law
k = rate constant
and
= concentration of A and B reactant
Now we have to determine the rate law for the given reaction.
The balanced equations will be:

In this reaction,
and
are the reactants.
The rate law expression for the reaction is:
![\text{Rate}=k[SO_2]^2[O_2]^1](https://tex.z-dn.net/?f=%5Ctext%7BRate%7D%3Dk%5BSO_2%5D%5E2%5BO_2%5D%5E1)
or,
![\text{Rate}=k[SO_2]^2[O_2]](https://tex.z-dn.net/?f=%5Ctext%7BRate%7D%3Dk%5BSO_2%5D%5E2%5BO_2%5D)