Answer:
3-hexanol
1 -butanol
2-pentanol
Explanation:
Let us recall that chromic acid or chromate are strong oxidizing agents. When they are oxidized, their colour changes from orange to green.
This shows a reduction in chromic acid or chromate. The reaction of chromic acid or chromate with a primary alcohol yields a carboxylic acid while reaction with a secondary substrate yields an alkanal.
Note that Tertiary alkyl halides are not be oxidized hence reactions involving a point where invitation carried along occur.
3-ethyl-3-pentanol is a tertiary alkyl halide hence it can not be oxidized.
Answer:
Copy and paste "Electromagnetic waves are categorized according to their frequency f or, equivalently, according to their wavelength λ = c/f. Visible light has a wavelength range from ~400 nm to ~700 nm. Violet light has a wavelength of ~400 nm, and a frequency of ~7.5*1014 Hz. Red light has a wavelength of ~700 nm, and a frequency of ~4.3*1014 Hz." into google, and the correct website pops up as the first result.
Explanation:
I tried to link the website that I use to convert wavelengths and frequencies into types of light, but it deleted my answer, so I guess we're doing it this way. As for converting the wavelength to energy, the same principles apply as before:
Frequency: ν Wavelength: λ Energy: E Speed of light: C (3.00e8) Planck's Constant: h (6.626e-34)
ν -> λ λ = C/ν
λ -> ν ν = C/λ
For either of these equations, wavelength must be converted to meters or nanometers, depending on the equation.
For ν -> λ, after doing the equation, convert the wavelength into nanometers by dividing by 1e-9.
For converting λ -> ν, convert the wavelength into meters by multiplying by 1e-9.
For energy: E = hν = hc/λ
Answer:
The answer is C Hope this helps!
Each isotope has a unique rate of decay, making them suitable for determining the dates of ancient artifacts. The answer is "rate of decay of the isotope."
Answer:
-27.2 kJ
Explanation:
We can use the heat-transfer formula. Recall that:

Where <em>m</em> is the mass, <em>C</em> is the substance's specific heat, and Δ<em>T</em> is the change in temperature.
Hence substitute:

Therefore, the cooling of the water <em>released</em> about 27.2 kJ of heat.