Answer: hello some data related to your question is missing attached below is the missing data
answer:
T2 = 265°C
Explanation:
First step : calculate sum of vertical forces
∑ y = 0
Fmg - 2(0.5 Fst ) = 0
∴Fmg = ( 12 * 10^6 ) ( 2 * π/4 (0.01)^2 )
= 1884.96 N
Also determine the Compatibility equation in order to determine the change in Temperature
ΔT = 250°C
therefore Temperature at which average normal stress becomes 12.0 MPa
ΔT = T2 - T1
250°C = T2 - 15°C
T2 = 250 + 15 = 265°C
attached below is the detailed solution
Determine whether w is in the span of the given vectors v1; v2; : : : vn
. If your answer is yes, write w as a linear combination of the vectors v1; v2; : : : vn and enter the coefficients as entries of the matrix as instructed is given below
Explanation:
1.Vector to be in the span means means that it contain every element of said vector space it spans. So if a set of vectors A spans the vector space B, you can use linear combinations of the vectors in A to generate any vector in B because every vector in B is within the span of the vectors in A.
2.And thus v3 is in Span{v1, v2}. On the other hand, IF all solutions have c3 = 0, then for the same reason we may never write v3 as a sum of v1, v2 with weights. Thus, v3 is NOT in Span{v1, v2}.
3.In the theory of vector spaces, a set of vectors is said to be linearly dependent if at least one of the vectors in the set can be defined as a linear combination of the others; if no vector in the set can be written in this way, then the vectors are said to be linearly independent.
4.Given a set of vectors, you can determine if they are linearly independent by writing the vectors as the columns of the matrix A, and solving Ax = 0. If there are any non-zero solutions, then the vectors are linearly dependent. If the only solution is x = 0, then they are linearly independent.
Answer:
A pet
Explanation:
Latin time I checked animals aren't made by people? I honestly don't know if this helps but I'm technically not wrong.