Answer:
a) fr = 266.92 N, fy = 1300 N, b) μ = 0.36
Explanation:
a) This is a balancing act.
Let's write the rotational equilibrium relations, where the turning point is the bottom of the ladder and the counterclockwise rotations are positive
-w x - W x₂ + R y = 0 (1)
usemso trigonometry to find distances
cos 60.08 = x / 7.5
x = 7.5 cos 60.08
x = 3.74 m
fireman
cos 60.08 = x₂ / 4
x2 = 4 cos 60
x2 = 2 m
wall support
sin 60.08 = y / 15
y = 15 are 60.08
y = 13 m
we substitute in equation 1
R y = w x + W x2
R = (w x + W x2) / y
R = (500 3.74 +800 2) / 13
R = 266.92 N
now let's write the expressions for the translational equilibrium
X axis
R -fr = 0
R = fr
fr = 266.92 N
Y Axis
Fy - w-W = 0
fy = 500 + 800
fy = 1300 N
b) ask the friction coefficient
the firefighter's distance is
cos 60.08 = x₃ / 9.00
x₃ = 9 cos 60
x₃ = 5.28 m
from equation 1
R = (w x + W x₃) / y
R = 500 3.74 + 800 5.28) / 13
R = 468.769 N
we saw that
fr = R = 468.769
The expression for the friction force is
fr = μ N
in this case the normal is the ratio to pesos
N = Fy
N = 1300 N
μ N = fr
μ = fr / N
μ = 468,769 / 1300
μ = 0.36
Answer:
Thickness of Styrofoam insulation is 0.02741 m.
Explanation:
Given that,
Height = 0.25 m
Depth = 0.5 m
Power = 400 W
Temperature = 33°C
We need to calculate the area of Styrofoam
Using formula of area

Put the value into the formula


Inner surface temperature of freezer

Outer surface temperature of freezer

We need to calculate the thickness of Styrofoam insulation
Using Fourier law,


Put the value into the formula


Hence, Thickness of Styrofoam insulation is 0.02741 m.
The Answer to this question would Be A
Hope this helps
Please mark as brainliest(;
Answer:
a. 0.21 rad/s2
b. 2.205 N
Explanation:
We convert from rpm to rad/s knowing that each revolution has 2π radians and each minute is 60 seconds
200 rpm = 200 * 2π / 60 = 21 rad/s
180 rpm = 180 * 2π / 60 = 18.85 rad/s
r = d/2 = 30cm / 2 = 15 cm = 0.15 m
a)So if the angular speed decreases steadily (at a constant rate) from 21 rad/s to 18.85 rad/s within 10s then the angular acceleration is

b) Assume the grind stone is a solid disk, its moment of inertia is

Where m = 28 kg is the disk mass and R = 0.15 m is the radius of the disk.

So the friction torque is

The friction force is

Since the friction coefficient is 0.2, we can calculate the normal force that is used to press the knife against the stone

Answer:
1. telescope
2.

f- focal length
f- focal length r- the radius of curvature of the mirror

p-the distance of the object from the vertex of the mirror
l-the distance of the figure from the vertex of the mirror