Answer:
Maximum amount of heat = 10002151.38J
Explanation:
Workdone by motor in 86.1 minutes I given by:
W = power × time
W= 294 × 86.1×60
W= 1439424 Joules
W= 1.4 ×10^6Joules
The amount of heat extracted is given by:
/QL /= K/W/ = TL/W/ /(TH - TL)
Where TL= freezing compartment temperature
TH = Outside air temperature
/QL /= 271 × 1439424 / (310 - 271)
/QL/ = 390083904/39
/QL/ = 10002151.38 Joules
Answer:
4. The equilibrium will shift to favor formation of NO2(g)
Explanation:
According to La Chatalier's Principle which states that when an equilibrium system undergoes changes either in temperature, volume or concentration; there will be in a change in the system in order to reach equilibrium.
From the above equation,
N2O4(g) ⇀↽ 2 NO2(g)
From the above reaction, there are 2 moles of gaseous product on the left and 1 mole of gaseous reactant.
Therefore, there are more moles of gases in the left hand side than the right hand side.
Because a decrease in volume favors the direction that produces fewer moles, an increase in volume will therefore shift this system towards the side with more moles of gases that is, more products are formed hence, this system will shift to right and produce more moles of products i.e more NO2(g) formed.
M= ?
g=9.8 m/s (2)
h=20 m
Eg=362,600 J
Eg/mg
362,600 J/9.8 m/s (2) x 20 m
=1,850 m
Answer:
The transverse component of acceleration is 26.32
where as radial the component of acceleration is 8.77 
Explanation:
As per the given data
u=π/4 rad
ω=u'=2 rad/s
α=u''=4 rad/s

So the transverse component of acceleration are given as

Here


So

The transverse component of acceleration is 26.32 
The radial component is given as

Here

So

The radial component of acceleration is 8.77 
The answer to your question is OPTION B