Answer:
Explanation:
We shall apply concept of impulse to solve the problem .
Impulse = force x time
impulse = change in momentum
force x time = change in momentum
initial speed u = 24 km/h = 6.67 m /s
final speed v = 65 km/h = 18.05 m /s
change in momentum = m v - mu
= m ( v-u )
= 1350 ( 18.05 - 6.67 )
= 15363 kg m/s
F x 18 = 15363
F = 853.5 N .
Answer:
about 602 milliseconds
Explanation:
The motion can be approximated by the equation ...
y = -4.9t^2 -22.8t +15.5
where t is the time since the arrow was released, and y is the distance above the ground.
When y=0, the arrow has hit the ground.
Using the quadratic formula, we find ...
t = (-(-22.8) ± √((-22.8)^2 -4(-4.9)(15.5)))/(2(-4.9))
= (22.8 ± √823.64)/(-9.8)
The positive solution is ...
t ≈ 0.60195193
It takes about 602 milliseconds for the arrow to reach the ground.
Answer:
Resistance in the flash tube, 
Explanation:
It is given that,
Speed of the bullet, v = 500 m/s
Distance between one RC constant, d = 1 mm = 0.001 m
Capacitance, 
The time constant of RC circuit is given by :

R is the resistance in the flash tube
..........(1)
Speed of the bullet is given by total distance divided by total time taken as :




Equation (1) becomes :


So, the resistance in the flash tube is
. Hence, this is the required solution.
Answer:
Q = c M ΔT where c is the heat capacity and M the mass present
Q2 / Q1 = M2 / M1 since the other factors are the same
M = ρ V where ρ is the density
M = ρ Π (d / 2)^2 where d is the diameter of the sphere
M2 / M1 = (2 D/2)^2 / (D/2)^2 = 4
It will take 4Q heat to heat the second sphere
Answer:
Explanation:
30 rev/min (2π rad/rev) / (60 s/min) = π rad/s
α = Δω/t = (0 - π)/3 = π/3 rad/s²
θ = ½αt² = ½(π/3)3² = 1.5π radians
θ = 1.5π rad/2π rad/rev = 0.75 rev