weeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee true eeeeeeeeeeeeeeeeeeeee
Answer:
The acceleration required by the rocket in order to have a zero speed on touchdown is 19.96m/s²
The rocket's motion for analysis sake is divided into two phases.
Phase 1: the free fall motion of the rocket from the height 2.59*102m to a height 86.9m
Phase 2: the motion of the rocket due to the acceleration of the rocket also from the height 86.9m to the point of touchdown y = 0m.
Explanation:
The initial velocity of the rocket is 0m/s when it started falling from rest under free fall. g = 9.8m/s² t1 is the time taken for phase 1 and t2 is the time taken for phase2.
The final velocity under free fall becomes the initial velocity for the accelerated motion of the rocket in phase 2 and the final velocity or speed in phase 2 is equal to zero.
The detailed step by step solution to the problems can be found in the attachment below.
Thank you and I hope this solution is helpful to you. Good luck.
Answer:
material work function is 0.956 eV
Explanation:
given data
red wavelength 651 nm
green wavelength 521 nm
photo electrons = 1.50 × maximum kinetic energy
to find out
material work function
solution
we know by Einstein photo electric equation that is
for red light
h ( c / λr ) = Ф + kinetic energy
for green light
h ( c / λg ) = Ф + 1.50 × kinetic energy
now from both equation put kinetic energy from red to green
h ( c / λg ) = Ф + 1.50 × (h ( c / λr ) - Ф)
Ф =( hc / 0.50) × ( 1.50/ λr - 1/ λg)
put all value
Ф =( 6.63 ×
(3 ×
) / 0.50) × ( 1.50/ λr - 1/ λg)
Ф =( 6.63 ×
(3 ×
) / 0.50 ) × ( 1.50/ 651×
- 1/ 521 ×
)
Ф = 1.5305 ×
J × ( 1ev / 1.6 ×
J )
Ф = 0.956 eV
material work function is 0.956 eV
We begin by noting that the angle of incidence is the one that's taken with respect to the normal to the surface in question. In this case the angle of incidence is 30. The material is Flint Glass according to the original question. The refractive indez of air n1=1, the refractive index of red in flint glass is nred=1.57, finally for violet in the glass medium is nviolet=1.60. Snell's Law dictates:

Where

differs for each wavelenght, that means violet and red will have different refractive indices in the glass.
In the second figure provided details are given on which are the angles in question,

is the distance between both rays.


At what distance d from the incidence normal will the beams land at the bottom?
For violet we have:

For red we have:

We finally have:
Answer:
<em>The work done by the car is 363 kJ</em>
Explanation:
Work : Work is said to be done when a Force moves an object through a certain distance. Work and Energy are interchangeable because they have the same unit. The unit of work is Joules (J).
Mathematically work done can be expressed as,
E = W = 1/2mv²
W = 1/2mv²................................ Equation 1
Where E = Energy, W = work done, m = mass of the car, v = velocity of the car
<em>Given: m=1500 kg, v=22 m/s</em>
<em>Substituting these values into equation 1</em>
<em>W = 1/2(1500)(22)²</em>
<em>W = 750 × 484</em>
<em>W = 363000 J</em>
<em>W = 363 kJ</em>
<em>Thus the work done by the car is 363 kJ</em>