To do that, you must pass electric current through a substance
that electrons have to spend energy to pass through.
The substance will be one that gets warm and dissipates heat
when electric current flows through it.
We'll say that the substance has "resistance", which we can measure.
The amount of heat that appears when current flows through it
will be (current²)·(resistance).
A few examples of things used for that purpose:
-- resistors
-- burners on electric stoves
-- coils of resistor-wire in a toaster
-- aquarium heater
-- electric clothes iron
-- electric coffee pot
-- blow-dryer
-- electric hair-curling iron
-- skinny tungsten wire in a light-bulb .
Answer:
The angular speed of the new system is
.
Explanation:
Due to the absence of external forces between both disks, the Principle of Angular Momentum Conservation is observed. Since axes of rotation of each disk coincide with each other, the principle can be simplified into its scalar form. The magnitude of the Angular Momentum is equal to the product of the moment of inertial and angular speed. When both disks begin to rotate, moment of inertia is doubled and angular speed halved. That is:

Where:
- Moment of inertia of a disk, measured in kilogram-square meter.
- Initial angular speed, measured in radians per second.
- Final angular speed, measured in radians per second.
This relationship is simplified and final angular speed can be determined in terms of initial angular speed:

Given that
, the angular speed of the new system is:


The angular speed of the new system is
.
Answer: I Think it should be Mixture.
Explanation: Because titanium is a mixture and its only 1% of the 2nd option and its not a pure substance and it might be a compound.
The answer would be point A.
Hope this helped you.