The temperature difference of 1 K is equivalent to the temperature difference of 1 °C. Therefore, we find the relationship between the change in °F and °C.
A change of 212 - 32 °F is the same as a change of 100 - 0 °C. Thus:
(212 - 32) °F = (100 - 0) °C
1 °C = 1.8 °F
1 K = 1.8 °F
Answer:
1. 
2. 
3. 
Explanation:
Given:
- mass of slinky,

- length of slinky,

- amplitude of wave pulse,

- time taken by the wave pulse to travel down the length,

- frequency of wave pulse,

1.



2.
<em>Now, we find the linear mass density of the slinky.</em>


We have the relation involving the tension force as:




3.
We have the relation for wavelength as:



Answer:
is the drop in the water temperature.
Explanation:
Given:
- mass of ice,

- mass of water,

Assuming the initial temperature of the ice to be 0° C.
<u>Apply the conservation of energy:</u>
- Heat absorbed by the ice for melting is equal to the heat lost from water to melt ice.
<u>Now from the heat equation:</u>

......................(1)
where:
latent heat of fusion of ice 
specific heat of water 
change in temperature
Putting values in eq. (1):

is the drop in the water temperature.
Answer The fringes become closer together as the slits are moved farther apart.