Enzymes catalyze the chemical reactions, they act upon the reaction substrates and speed up the reaction. Enzymes have active sites, the places where the reaction substrates interact with the enzyme bringing about the conversion of substrates to products. So, as the enzyme concentration increases the rate of reaction increases till a point where the rate is leveled off. The rate does not further increase, as the substrate might have become limiting at that point. All the available amount of substrate would have been associated with the active sites of the enzymes. So, at that point although there is enough catalyst, lack of substrate would limit the rate of reaction.
Concave is not a type of mechanical wave because it doesn’t need a medium for propagation.
The oxidation number of elements in equation below are,
4NH₃ + 3Ca(ClO)₂ → 2N₂ + 6H₂O + 3CaCl₂
O.N of N in NH₃ = -3
O.N of Ca in Ca(ClO)₂ and CaCl₂ = +2
O.N of N in N₂ = 0
O.N of Cl in Ca(ClO)₂ = +1
O.N of Cl in CaCl₂ = -1
Oxidation:
Oxidation number of Nitrogen is increasing from -3 (NH₃) to 0 (N₂).
Reduction:
Oxidation number of Cl is decreasing from +1 [Ca(ClO)₂] to -1 (CaCl₂).
Result:
<span>N is oxidized and Cl is reduced.</span>
Answer:

Explanation:
To answer this question successfully, we need to remember that atoms are neutral species, since the number of protons, the positively charged particles, is equal to the number of electrons, the negatively charged particles. That said, we may firstly find an atom which has 3 electrons (and, as a result, 3 protons, as it should be neutral).
The number of protons is equal to the atomic number of an element. We firstly may have an atom with 3 protons and 3 electrons (atomic number of 3, this is Li).
Similarly, we may take the atomic number of 4, beryllium, and remove 1 electron from it. Upon removing an electron, it would become beryllium cation,
.
We may use the same logic going forward and taking the atomic number of 5. This is boron. In this case, we need to remove 2 electrons to have a total of 3 electrons. Removal of 2 electrons would yield a +2-charged cation:
.
B i’m pretty sure, because the heavier the better it works