Explanation:
It is given that, the height of a certain tower is 862 feet i.e to reach on the ground the object should travel, s = 862 feet
The distance traveled by a freely falling object is given by :



t = 7.34 seconds
So, the object will take 7.34 seconds to fall to the ground from the top of the building. Hence, this is the required solution.
Answer:
16
Explanation:
6+10=16
the box will go forward but it will be a little harder.
Answer:
B
Explanation:
quantization of energy is only seen in atoms
Answer:
Option E is correct.
There must be a horizontal wind opposite the direction of the stone's motion, because ignoring air resistance when calculating the horizontal range would yield a value greater than 32 m.
Explanation:
Normally, ignoring air resistance, for projectile motion, the range (horizontal distance teavelled) of the motion is given as
R = (u² sin 2θ)/g
where
u = initial velocity of the projectile = 20 m/s
θ = angle above the horizontal at which the projectile was launched = 30°
g = acceleration due to gravity = 9.8 m/s²
R = (30² sin 60°) ÷ 9.8
R = 78.53 m
So, Normally, the stone should travel a horizontal distance of 78.53 m. So, travelling a horizontal distance of 32 m (less than half of what the range should be without air resistance) means that, the motion of the stone was impeded, hence, option E is correct.
There must be a horizontal wind opposite the direction of the stone's motion, because ignoring air resistance when calculating the horizontal range would yield a value greater than 32 m.
Hope this Helps!!!
Answer:
F = 326.7 N
Explanation:
given data
mass m = 200 kg
distance d = 2 m
length L = 12 m
solution
we know force exerted by the weight of the rock that is
W = m × g ..............1
W = 200 × 9.8
W = 1960 N
and
equilibrium the sum of the moment about that is
∑Mf = F(cos∅) L - W (cos∅) d = 0
here ∅ is very small so cos∅ L = L and cos∅ d = D
so F × L - W × d = 0 .................2
put here value
F × 12 - 1960 × 2 = 0
solve it we get
F = 326.7 N