1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Kazeer [188]
3 years ago
6

A ball is kicked horizontally at 4.6 m/s off of a cliff 13.4 m high. How far from the cliff will it land.

Physics
1 answer:
Mekhanik [1.2K]3 years ago
5 0
<h3>Answer:</h3>

7.53 m

<h3>Explanation:</h3>

<u>We are given:</u>

Initial Horizontal Velocity of the Ball = 4.6 m/s

Initial Vertical Velocity of the Ball = 0 m/s

Height from which ball is kicked = 13.4 m

<u>Time taken by the ball to reach the ground:</u>

The ball has an initial vertical velocity of 0 m/s

it also has a downward acceleration of 10 m/s² due to gravity

<u>Solving for the time taken:</u>

s = ut + 1/2(at²)                 [second equation of motion]

replacing the values

13.4 = (0)(t) + 1/2 (10)(t²)

13.4 = 5t²

t² = 13.4/5                  [dividing both sides by 5]

t² = 2.68

t = 1.637 seconds     [taking the square root of both sides]

<u>Horizontal distance covered by the ball:</u>

Since there are no horizontal opposing forces on the ball,

the ball will more horizontally at a velocity of 4.6 m/s until it hits the ground

We calculated that the ball will hit the ground in 1.637 seconds

<u>Distance covered:</u>

s = ut + 1/2 (at²)                            [seconds equation of motion]

s = ut                                            [since a = 0m/s² in the horizontal plane]

replacing the values

s = 4.6 * 1.637

s = 7.53 m

Hence, the ball landed 7.53 m from the cliff

You might be interested in
You and your friends are having a discussion about weight. He/she claims that he/she weighs less on the 100th floor of a buildin
Viktor [21]

Answer:

if the weight theoretically decreases at this height, but in a fraction of 10⁻⁵, which is not appreciable in any scale, therefore, the reading of the scale in the two places is the same.

Explanation:

The weight of a person in the force with which the Earth attracts the person, therefore can be calculated using the law of universal attraction

          F = G m M / r²

Where m is the mass of the person, M the masses of the earth

Let's call the person's weight at ground level as Wo and suppose the distance to the center of the Earth is Re

            W₀ = G m M / Re²

In the calculation of the weight of the person on the 100th floor the only thing that changes is the distance

          r = Re + 100 r₀

Where r₀ is the distance between the floors, which is approximately 2.5 m, so the distance is

         r = Re + 250

We substitute

     W = G m M / r²

      W = G m M / (Re + 250)²

The value of Re is 6.37 10⁶ m, so we can take it out as a factor and perform a serial expansion of the remaining fraction

      W = G m M / Re² (1+ 250 / Re)²

      (1 + 250 / Re)⁻² = 1 + (-2) 250 / Re + (-2 (-2-1)) / 2 (250 / Re)² +….

The value of the expression is

      (1 + 250 / Re)⁻² = 1 -2 250 / 6.37 10⁶ -30 (250 / 6.37)² 10⁻¹² + ...

We can see that the quadratic term is very small, which is why we despise it, we substitute in the weight equation

      W = G m M / Re² (1 - 78.5 10⁻⁶)

Remains

     W = Wo (1 - 7.85  10⁻⁵)

We can see that if the weight theoretically decreases at this height, but in a fraction of 10⁻⁵, which is not appreciable in any scale, therefore, the reading of the scale in the two places is the same.

4 0
3 years ago
Read 2 more answers
Radio waves just like light waves can be reflected refracted and diffracted and polarized.
hoa [83]
<span>Radio waves just like light waves can be reflected refracted and diffracted and polarized.  The answer is True. </span>These characteristics are the common phenomena for electromagnetic (EM)  waves, and Radio Waves are electromagnetic Waves so much so that they obey reflection, refraction, and diffraction. 
5 0
3 years ago
Read 2 more answers
A ball is dropped from rest at the top of a 6.10 m
natita [175]

Answer:

n = 5 approx

Explanation:

If v be the velocity before the contact with the ground and v₁ be the velocity of bouncing back

\frac{v_1}{v} = e ( coefficient of restitution ) = \frac{1}{\sqrt{10} }

and

\frac{v_1}{v} = \sqrt{\frac{h_1}{6.1} }

h₁ is height up-to which the ball bounces back after first bounce.

From the two equations we can write that

e = \sqrt{\frac{h_1}{6.1} }

e = \sqrt{\frac{h_2}{h_1} }

So on

e^n = \sqrt{\frac{h_1}{6.1} }\times \sqrt{\frac{h_2}{h_1} }\times... \sqrt{\frac{h_n}{h_{n-1} }

(\frac{1}{\sqrt{10} })^n=\frac{2.38}{6.1}= .00396

Taking log on both sides

- n / 2 = log .00396

n / 2 = 2.4

n = 5 approx

3 0
3 years ago
As more babies are piled into a shopping cart, and the velocity stays the same, what happens to its momentum?
vagabundo [1.1K]
The momentum would increase assuming the velocity stays the same. P=Mv
7 0
2 years ago
Power selection feature for resistors to become water modules 10 liters of water at 25°C to đến
Mila [183]

Answer:

P = 2439.5 W = 2.439 KW

Explanation:

First, we will find the mass of the water:

Mass = (Density)(Volume)

Mass = m = (1 kg/L)(10 L)

m = 10 kg

Now, we will find the energy required to heat the water between given temperature limits:

E = mCΔT

where,

E = energy = ?

C = specific heat capacity of water = 4182 J/kg.°C

ΔT = change in temperature = 95°C - 25°C = 70°C

Therefore,

E = (10 kg)(4182 J/kg.°C)(70°C)

E = 2.927 x 10⁶ J

Now, the power required will be:

Power = P = \frac{E}{t}

where,

t = time = (20 min)(60 s/1 min) = 1200 s

Therefore,

P = \frac{2.927\ x\ 10^6\ J}{1200\ s}

<u>P = 2439.5 W = 2.439 KW</u>

7 0
2 years ago
Other questions:
  • A model train moves 18.3m in 122s. What is the train's average speed?
    11·1 answer
  • This glass of lemonade is sitting in the hot summer sun. As time passes, in which direction will heat transfer take place?
    7·2 answers
  • Why aren’t homes wired in series
    8·1 answer
  • Ocean waves are hitting a beach at a rate of 3.5 hz. what is the period of the waves?
    7·1 answer
  • The driver of a pickup truck accelerates from rest to a speed of 37 mi/hr over a horizontal distance of 215 ft with constant acc
    14·1 answer
  • If your mass, the mass of Earth, and the mass of everything in the solar system were twice as much as it is now, yet everything
    6·1 answer
  • A disk has a radius of 30 cm and a mass of 0.3 kg and is turning at 3.0 rev/s. A trickle of sand falls onto the disk at a distan
    13·1 answer
  • Plz help me with this sheet?
    10·2 answers
  • Which could describe the motion of any object
    6·1 answer
  • Help me with the following problem
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!