Well, you gave us the formula to calculate power from work and time,
but you didn't give us the formula for work. We have to know that.
Work = (force) x (distance)
The work to raise Sara to the top of the hill is
Work = (300 N) x (15 meters)
= 4,500 newton-meters = 4,500 joules .
Now we're ready to use the formula that you gave us. (Thank you.)
Power = (work) / (time)
= (4,500 joules) / (10 seconds)
450 joules/second = 450 watts.
Answer:
10.4mm
Explanation:
2 pages = 1 leaf
200 pages = 100 leaves
100 × 0.10 = 10 mm thickness
Total thickness = 2(0.20) +10 = 0.4+10 = 10.4mm
Answer:
In free fall, mass is not relevant and there's no air resistance, so the acceleration the object is experimenting will be equal to the gravity exerted. If the object is falling on our planet, the value of gravity is approximately 9.81ms2 .
Wooden spoons don't quickly heat to hot temperatures not nearly as fast as metal does. Metal conducts heat faster than wood — if the head of the spoon is in a hot liquid, the handle will get hot faster if it's made out of a metal.
Answer:
F = 0.00156[N]
Explanation:
We can solve this problem by using Newton's proposed universal gravitation law.

Where:
F = gravitational force between the moon and Ellen; units [Newtos] or [N]
G = universal gravitational constant = 6.67 * 10^-11 [N^2*m^2/(kg^2)]
m1= Ellen's mass [kg]
m2= Moon's mass [kg]
r = distance from the moon to the earth [meters] or [m].
Data:
G = 6.67 * 10^-11 [N^2*m^2/(kg^2)]
m1 = 47 [kg]
m2 = 7.35 * 10^22 [kg]
r = 3.84 * 10^8 [m]
![F=6.67*10^{-11} * \frac{47*7.35*10^{22} }{(3.84*10^8)^{2} }\\ F= 0.00156 [N]](https://tex.z-dn.net/?f=F%3D6.67%2A10%5E%7B-11%7D%20%2A%20%5Cfrac%7B47%2A7.35%2A10%5E%7B22%7D%20%7D%7B%283.84%2A10%5E8%29%5E%7B2%7D%20%7D%5C%5C%20F%3D%200.00156%20%5BN%5D)
This force is very small compare with the force exerted by the earth to Ellen's body. That is the reason that her body does not float away.