Answer: 1.96x10^24 atoms
Explanation:
3.25*6.02214076*10^23 atoms = 1.96x10^24
Answer:
Explanation:
The lewis structure (indicating all the atoms and patterns provided as hint in the question) of glycine can be seen in the attachment below. While the chemical structure of glycine can be seen below
H
|
H₂N - C - C =O
| \
H OH
The structure (of glycine) above provides a "fair idea" of how the lewis structure will be.
Answer:
Industrialization has historically led to urbanization by creating economic growth and job opportunities that draw people to cities. Urbanization typically begins when a factory or multiple factories are established within a region, thus creating a high demand for factory labor.
Answer:
+1
Explanation:
Na₂O₂
NOTE: the oxidation number of oxygen is always –2 except in peroxides where it is –1.
Thus, we can obtain the oxidation number of sodium (Na) in Na₂O₂ as illustrated below:
Na₂O₂ = 0 (oxidation number of ground state compound is zero)
2Na + 2O = 0
O = –1
2Na + 2(–1) = 0
2Na – 2 = 0
Collect like terms
2Na = 0 + 2
2Na = 2
Divide both side by 2
Na = 2/2
Na = +1
Thus, the oxidation number of sodium (Na) in Na₂O₂ is +1
Answer:
The chemical potential of 2-propanol in solution relative to that of pure 2-propanol is lower by 2.63x10⁻³.
Explanation:
The chemical potential of 2-propanol in solution relative to that of pure 2-propanol can be calculated using the following equation:
<u>Where:</u>
<em>μ (l): is the chemical potential of 2-propanol in solution </em>
<em>μ° (l): is the chemical potential of pure 2-propanol </em>
<em>R: is the gas constant = 8.314 J K⁻¹ mol⁻¹ </em>
<em>T: is the temperature = 82.3 °C = 355.3 K </em>
<em>x: is the mole fraction of 2-propanol = 0.41 </em>

Therefore, the chemical potential of 2-propanol in solution relative to that of pure 2-propanol is lower by 2.63x10⁻³.
I hope it helps you!