As atomic number increases atomic radii also increase down group 1. ionisation energy down group 1 will also decrease because as atomic radii gets bigger there is less electrostatic force between nuclei and electrons so less energy needed to remove valence electron.
Answer:
a element
Explanation:
In science copper is a element. It is one of the transition metals found on the periodic table of elements.
Elements are distinct substances that cannot be split-up into simpler substances. Such substances consist of one kind of atom.
There are over a hundred elements that are known till date.
Each elements combines to form a compound
The empirical formula of the compound obtained from the question given is NaBrO₃
<h3>Data obtained from the question </h3>
- Sodium (Na) = 15.24%
- Bromine (Br) = 52.95%
- Oxygen (O) = 31.81%
<h3>How to determine the empirical formula </h3>
The empirical formula of the compound can be obtained as illustrated below:
Divide by their molar mass
Na = 15.24 / 22.99 = 0.663
Br = 52.95 / 79.90 = 0.663
O = 31.81 / 16 = 1.988
Divide by the smallest
Na = 0.663 / 0.663 = 1
Br = 0.663 / 0.663 = 1
O = 1.988 / 0.663 = 3
Thus, the empirical formula of the compound is NaBrO₃
Learn more about empirical formula:
brainly.com/question/24297883
Answer:
1.28 mol
Explanation:
mole = mass/molar mass
n = v/v/cm³
mass = 0. 075g
v = 1dm³ =1000cm³
n= m/MV=0.075/58.44(1000)
n =1.28 mol
Answer:
10 kg of ice will require more energy than the released when 1 kg of water is frozen because the heat of phase transition increases as the mass increases.
Explanation:
Hello!
In this case, since the melting phase transition occurs when the solid goes to liquid and the freezing one when the liquid goes to solid, we can infer that melting is a process which requires energy to separate the molecules and freezing is a process that releases energy to gather the molecules.
Moreover, since the required energy to melt 1 g of ice is 334 J and the released energy when 1 g of water is frozen to ice is the same 334 J, if we want to melt 10 kg of ice, a higher amount of energy well be required in comparison to the released energy when 1 kg of water freezes, which is about 334000 J for the melting of those 10 kg of ice and only 334 J for the freezing of that 1 kg of water.
Best regards!