Answer:
Explanation:
If we look at the structure of 1-Bromopropane; we will see that it is a derivative of alkane family by the the substitution of an alkyl group. The position of the Bromine in the propane is 1, making 1-Bromopropane a primary alkyl-halide.
Primary alkyl - halide undergo SN2 mechanism. This nucleophilic reaction needs to be a strong alkyl halide , such as 1-Bromopropane used otherwise it will result to a reactive mechanism if a weak electrophile is used.
However, the critical and the main objective here is to Draw the major substitution product if the reaction proceeds in good yield. If no reaction is expected or yields will be poor, draw the starting material in the box. If a charged product is formed, be sure to draw the counterion.
The attached diagrams portraying this notions is shown in the attached file below.
The process involving separation of liquid/solid mixture as regards this question is Decantation.
- Decantation can be regarded as one of the process used in separation of liquid from solid as well as other immiscible (non-mixing) liquids through the removal of the liquid layer that is present at the top from the layer of solid/liquid which present at the below.
- In the process, the liquid will be poured slowly into another vessel as the pouring continues, then the solid will settle in the original vessel.
- This process can be done through tilting the mixture after the the top layer have been poured out.
<em>Therefore, decantation is one of the separation technique.</em>
Learn more at: brainly.com/question/16937734?referrer=searchResults
Electromagnetism
Theoretically it is a branch of physics that contains two sources. Either electrically charged particles or the behavior between Neutrons and protons etc.
Answer:
Anode: H₂(g) + 2 OH⁻(aq) → 2 H₂O(l) + 2 e⁻
Cathode: 2 Fe⁺³(aq) + 2 e⁻ → 2 Fe⁺²(aq)
E° = 1.60 V
Explanation:
Let's consider the reaction taking place in a galvanic cell.
2 Fe⁺³(aq) + H₂(g) + 2 OH⁻(aq) → 2 Fe⁺²(aq) + 2 H₂O(l)
The corresponding half-reactions are:
Anode (oxidation): H₂(g) + 2 OH⁻(aq) → 2 H₂O(l) + 2 e⁻ E°red = - 0.83 V
Cathode (reduction): 2 Fe⁺³(aq) + 2 e⁻ → 2 Fe⁺²(aq) E°red = 0.77 V
The standard cell potential (E°) is the difference between the standard reduction potential of the cathode and the standard reduction potential of the anode.
E° = E°red, cat - E°red, an = 0.77 V - (-0.83 V) = 1.60 V
I believe the scientific method