From largest to smallest they are: Universe, galaxy, solar system, star, planet, moon and asteroid.
Explanation:Let's describe them from smallest to largest. In fact the size order is not exact as there are exceptions.An asteroid is a rocky body which lies in the asteroid belt between Mars and Jupiter. They are typically quite small object. The largest asteroid Ceres has been reclassified as a dwarf planet.A moon is typically a rocky body which is in orbit around a planet. Some moons such as our Moon are quite large and are typically bigger than asteroid. Some moons can actually be smaller than some asteroids.A planet is a nearly spherical body which is in orbit around the Sun. Planets are larger than moons.A star is what planets orbit around. It is the source of light and heat. Our Sun is a star which is many times bigger than all of the planets.A solar system is a star and all of its planets, asteroids, comets and other bodies. It is significantly bigger than a star.A galaxy, such as our Milky Way Galaxy, is a collection of solar systems orbiting around a central core. Most galaxies have a supermassive black hole at their centres.Galaxies also form clusters which are large scale structures.The universe is everything. It contains billions of galaxies. Lots of information RIGHT!!!!
YOUR VERY WelCoMe!!!! :) :) :) :) :0 :)
Answer:
1. 150C.
2. 50sec
3.1.5a
Explanation:
1. I = Q/T
Q= 30x5
=150c
2.applying the formulae, I = Q/T
T= Q/I
=500/10
=50sec.
3. using the formulae i=q/t
i= 120/80
=1.5a.
Answer:
The ratio is 9.95
Solution:
As per the question:
Amplitude, 
Wavelength, 
Now,
To calculate the ratio of the maximum particle speed to the speed of the wave:
For the maximum speed of the particle:

where
= angular speed of the particle
Thus

Now,
The wave speed is given by:

Now,
The ratio is given by:


I would say that this is the first law of thermodynamics.
Answer:
95.9°
Explanation:
The diagram illustrating the action of the two forces on the object is given in the attached photo.
Using sine rule a/SineA = b/SineB, we can obtain the value of B° as shown in the attached photo as follow:
a/SineA = b/SineB,
83/Sine52 = 56/SineB
Cross multiply to express in linear form
83 x SineB = 56 x Sine52
Divide both side by 83
SineB = (56 x Sine52)/83
SineB = 0.5317
B = Sine^-1(0.5317)
B = 32.1°
Now, we can obtain the angle θ, between the two forces as shown in the attached photo as follow:
52° + B° + θ = 180° ( sum of angles in a triangle)
52° + 32.1° + θ = 180°
Collect like terms
θ = 180° - 52° - 32.1°
θ = 95.9°
Therefore, the angle between the two forces is 95.9°