Oneiididudd even said wy the candy shop in the candy store and you I know you got it to get your gift card owywiwywuwywywywtwtwtwtwt teteyy gift cards and gift card gift gift card for your card gift cards to you
Answer:
a) v = √(v₀² + 2g h), b) Δt = 2 v₀ / g
Explanation:
For this exercise we will use the mathematical expressions, where the directional towards at is considered positive.
The velocity of each ball is
ball 1. thrown upwards vo is positive
v² = v₀² - 2 g (y-y₀)
in this case the height y is zero and the height i = h
v = √(v₀² + 2g h)
ball 2 thrown down, in this case vo is negative
v = √(v₀² + 2g h)
The times to get to the ground
ball 1
v = v₀ - g t₁
t₁ =
ball 2
v = -v₀ - g t₂
t₂ = - \frac{v_{o} + v }{ g}
From the previous part, we saw that the speeds of the two balls are the same when reaching the ground, so the time difference is
Δt = t₂ -t₁
Δt =
Δt = 2 v₀ / g
That's unaccelerated motion,
and constant velocity.
Answer: Because temperature is a measure of the average kinetic energy of the atoms or molecules in the system. The zeroth law of thermodynamics says that no heat is transferred between two objects in thermal equilibrium; therefore, they are the same temperature.
Explanation:9 (- _ -)
<span>The entire time the ball is in the air, its acceleration is 9.8 m/s2 down provided this occurs on the surface of the Earth. Note that the acceleration can be either 9.8 m/s2 or -9.8 m/s2.
[Please Mark as Brainliest]
</span>