Part A:
Acceleration can be calculated by dividing the difference of the initial and final velocities by the given time. That is,
a = (Vf - Vi) / t
where a is acceleration,
Vf is final velocity,
Vi is initial velocity, and
t is time
Substituting,
a = (9 m/s - 0 m/s) / 3 s = 3 m/s²
<em>ANSWER: 3 m/s²</em>
Part B:
From Newton's second law of motion, the net force is equal to the product of the mass and acceleration,
F = m x a
where F is force,
m is mass, and
a is acceleration
Substituting,
F = (80 kg) x (3 m/s²) = 240 kg m/s² = 240 N
<em>ANSWER: 240 N </em>
Part C:
The distance that the sprinter travel is calculated through the equation,
d = V₀t + 0.5at²
Substituting,
d = (0 m/s)(3 s) + 0.5(3 m/s²)(3 s)²
d = 13.5 m
<em>ANSWER: d = 13.5 m</em>
all the allials must be aligned in the same direction
magnets are affected by heat, drops, and improper storage
Answer:
<h2>Magnitude of the second charge is

</h2>
Explanation:
According to columbs law;
F = 
F is the attractive or repulsive force between the charges = 12N
q1 and q2 are the charges
let q1 = - 8.0 x 10^-6 C
q2=?
r is the distance between the charges = 0.050m
k is the coulumbs constant =9*10⁹ kg⋅m³⋅s⁻⁴⋅A⁻²
On substituting the given values
12 = 9*10⁹*( - 8.0 x 10^-6)q2/0.050²
Cross multiplying

Answer:
890 N
Explanation:
Acceleration is change in velocity over change in time.
a = Δv / Δt
a = (11 m/s − 0 m/s) / 0.26 s
a = 42.3 m/s²
Force is mass times acceleration.
F = ma
F = (21 kg) (42.3 m/s²)
F ≈ 890 N