Answer:
5m/s
Explanation:
p=mv, or momentum (p) is equal to mass (m) times velocity (v).
so:
m=5Kg
p=25Kgm/s
v=p÷m
v=25÷5
v=5m/s
hoped this helped :)
Answer:
7revolutions
Explanation:
Given parameters:
Initial revolution = 250rpm
Final revolution = 150rpm
Time = 4.2s
Unknown:
Number of revolutions that occur at this time = ?
Solution:
To solve this problem;
let us find the change in revolution = 250rpm - 150rpm = 100rpm
Convert the time to seconds;
60s makes 1 minute
4.2s will make
= 0.07min
So;
The number of revolutions at this time = 100rpm x 0.07min
= 7revolutions
Answer:
Electric Field = 3.369 x 10^4 N/C
Explanation:
Radius = r = (r1 + r2) / 2 = (1.6 + 3.6) /2 = 2.6 cm + 2.3 cm = 4.9 cm = 0.049 m
As we know, Electric field = E = kQ/r.r
= 8.98755 x 10^9 x 9 x 10^-9 / 0.049 x 0.049 = 33689.275 N/C
= 3.369 x 10^4 N/C
An ion is created by the transfer of electrons. The metals give away the elections and become positively charged. The non - metals take on electrons.
Balance.
So an ion is any atom that either gives away or takes on electrons.
I don't completely understand your drawing, although I can see that you certainly
did put a lot of effort into making it. But calculating the moment is easy, and we
can get along without the drawing.
Each separate weight has a 'moment'.
The moment of each weight is:
(the weight of it) x (its distance from the pivot/fulcrum) .
That's all there is to a 'moment'.
The lever (or the see-saw) is balanced when (the sum of all the moments
on one side) is equal to (the sum of the moments on the other side).
That's why when you're on the see-saw with a little kid, the little kid has to sit
farther away from the pivot than you do. The kid has less weight than you do,
so he needs more distance in order for his moment to be equal to yours.