If the echo (the reflected sound) reaches your ear less than about
0.1 second after the original sound, your brain doesn't separate them,
and you're not aware of the echo even though it's there.
If the echo comes from, say, a wall, 0.1 second means you'd have to be
about 17 meters away from the wall. If you're closer than that, then the
echo reaches you in less than 0.1 second and you're not aware of it.
A. 30 meters . . .
No. You hear that echo easily
B. you're standing within range of both sounds . . .
No. You hear that echo easily, if you're at least 17 meters from the wall.
C. less than 0.1 second later . . .
That's it. The echo is there but your brain doesn't know it.
D. 21.5 meters
No. You hear that echo easily.
The answer to this is initial appearance and the second is final appearance.
Answer:
Explanation:
a ) speed of passenger = circumference / time
= 2π R / Time
= 2 x 3.14 x 50 / 60
= 5.23 m /s
b )
centrifugal force = m v² /R
= (882 /9.8 ) x 5.23² / 50
= 77.47 N
Apparent weight at the highest point
real weight - centrifugal force
= 882 - 77.47
= 804.53 N
Apparent weight at the lowest point
real weight + centrifugal force
= 882 +77.47
= 959.47 N
c ) if the passenger’s apparent weight at the highest point were zero
centrifugal force = weight
mv² /R = mg
v² = gR
= 9.8 X 50
v = 22.13 m /s
d )
apparent weight
mg - mv² / R
= 882 - (882 / 9.8 )x 22.13²/50
= 882 + 882
= 1764 N
=
Answer:
Sound travels through solids and liquids at the same speed
Explanation:
Because sound needs a dencer object to travel fast and since both liquid and solids are closer than gas sound travles faster in them.