B. How much work can be done in a given time. That’s why it’s measured occasionally I. “Horsepower.” It’s your ability to work fast and far.
Use newtons second law F=ma, plug in the given values which gives us the answer of 22 kg for the mass
(1.a) The surface area being vibrated by the time the sound reaches the listener is 5,026.55 m².
(1.b) The intensity of the sound wave as it reaches the person listening is 0.02 W/m².
(1.c) The relative intensity of the sound as heard by the listener is 103 dB.
(2.a) The speed of sound if the air temperature is 15⁰C is 340.3 m/s.
(2.b) The frequency of the sound heard by the suspect is 614.3 Hz.
<h3>
Surface area being vibrated</h3>
The surface area being vibrated by the time the sound reaches the listener is calculated as follows;
A = 4πr²
A = 4π x (20)²
A = 5,026.55 m²
<h3>Intensity of the sound</h3>
The intensity of the sound is calculated as follows;
I = P/A
I = (100) / (5,026.55)
I = 0.02 W/m²
<h3>Relative intensity of the sound</h3>

<h3>Speed of sound at the given temperature</h3>

<h3>Frequency of the sound</h3>
The frequency of the sound heard is determined by applying Doppler effect.

where;
- -v₀ is velocity of the observer moving away from the source
- -vs is the velocity of the source moving towards the observer
- fs is the source frequency
- fo is the observed frequency
- v is speed of sound


Learn more about intensity of sound here: brainly.com/question/17062836
We have that the magnitude of the gravitational force is mathematically given as
f=6.377N
<h3>
Force</h3>
Question Parameters:
Earth exerts a 100 N gravitational force on a metal box.
(Mass of the earth is 6e24 kg and radius of the earth is 6.4e6m.)
Generally the equation for the Gravitational mForce is mathematically given as

f=6.377N
For more information on Force visit
brainly.com/question/26115859