Answer:D
Explanation:
The high boiling point of HF is not attributable to the dispersion forces mentioned in the question. In HF, a stronger attraction is in operation, that is hydrogen bonding. This ultimately accounts for the high boiling point and not solely the dispersion model as in F2.
Answer:
I dont speak this language sorry :(
Explanation:
Answer:
Mass, m = 1.51 grams
Explanation:
It is given that,
The circumference of Aluminium cylinder, C = 13 mm = 1.3 cm
Length of the cylinder, h = 4.2 cm
We know that the density of the Aluminium is 2.7 g/cm³
Circumference, C = 2πr
Density is equal to mass per unit volume.
m is mass of the cylinder
V is the volume of the cylinder
So,
So, the mass of the cylinder is 1.51 grams.
Ok so, remember that t<span>he average atomic mass is what is seen on the periodic table. It is the average mass of all of the isotopes with their frequency taken into account. What you need to do is add the products of the masses and frequencies Just like this:</span>
<span>0.903*267.8 + 0.097*270.9
When you add it the result is what you are looking for</span>