Atoms have positive charges? or nuclei? Rutherford conducted the infamous gold foil experiment from which he concluded an atom mist contain a dense positively charged part with a orbiting shell of negative parts. That model was refined many times to form the current model of the atom.
Given: C3H8(g) + O2(g) ----> CO2 (g) + H2O (g)
Step : Put a 3 in front of CO2 (g) to balance C
=> C3H8(g) + O2(g) ----> 3CO2 + H2O to balance H
Step 2: Put a 4 in front of H2O
=> C3H8 (g) + O2(g) -----> 3CO2 (g) + 4H2O (g)
Step 3: Given that there are 3*2 + 4 = 10 O to the right side, put a 5 in front of O2 to balance O:
=> C3H8(g) + 5O2(g) -----> 3CO2(g) + 4H2O(g)
You can verify that the equation is balanced.
So, the answer is that the coefficient in front of O2 is 5.
Answer: Moles of hydrogen required are 4.57 moles to make 146.6 grams of methane,
.
Explanation:
Given: Mass of methane = 146.6 g
As moles is the mass of a substance divided by its molar mass. So, moles of methane (molar mass = 16.04 g/mol) are calculated as follows.

The given reaction equation is as follows.

This shows that 2 moles of hydrogen gives 1 mole of methane. Hence, moles of hydrogen required to form 9.14 moles of methane is as follows.

Thus, we can conclude that moles of hydrogen required are 4.57 moles to make 146.6 grams of methane,
.
The chemical reaction in which number of atoms of each element present in the reactant side is equal to the number of atoms of that element in product side, such reactions are said to be a balanced chemical reaction.
The chemical symbol for sodium is
.
The chemical symbol for fluorine gas is
.
The chemical symbol for sodium fluoride is 
The sodium fluoride is prepared from the reaction between sodium metal and fluorine gas can be written as:

The above reaction is not balanced as the number of fluorine atoms are not same on reactant and product side. So, in order to balance the reaction we will multiply
with 2 on reactant side and
with 2 on product side. Thus, the balanced reaction will be:

Thus, the balanced chemical equation is
.
Answer:
they are molecules with normal bonds rather than partial bonds and can occasionally be isolated.
Explanation:
In chemistry, reaction intermediates are species that are formed from reactants and are subsequently being transformed into products as the reaction progresses. In other words, reaction intermediates are species that do not appear in a balanced reaction equation but occur somewhere along the reaction mechanism of a non-elementary reaction. They are usually short lived species that possess a high amount of energy. They may or may not be isolated.
They are often molecular species with normal bonds unlike activated complexes that are sometimes hypervalent species.