Answer : The electron configurations consistent with this fact is, (b) [Kr] 4d¹⁰
Explanation :
Electronic configuration : It is defined as the representation of electrons around the nucleus of an atom.
Number of electrons in an atom are determined by the electronic configuration.
Paramagnetic compounds : They have unpaired electrons.
Diamagnetic compounds : They have no unpaired electrons that means all are paired.
The given electron configurations of Palladium are:
(a) [Kr] 5s²4d⁸
In this, there are 2 electrons in 's' orbital and 8 electrons in 'd' orbital. From the partial orbital diagrams we conclude that 's' orbital are paired but 'd' orbital are not paired. So, this configuration shows paramagnetic.
(b) [Kr] 4d¹⁰
In this, there are 10 electrons in 'd' orbital. From the partial orbital diagrams we conclude that electrons in 'd' orbital are paired. So, this configuration shows diamagnetic.
(c) [Kr] 5s¹4d⁹
In this, there are 1 electron in 's' orbital and 9 electrons in 'd' orbital. From the partial orbital diagrams we conclude that 's' orbital and 'd' orbital are not paired. So, this configuration shows paramagnetic.
Common thing is that their outmost shell is completely filled with the electrons. They are inert gases.
Answer:
See explanation
Explanation:
The question is incomplete because the images of the models are absent. However, i will try to give you a general description of what the correct answer should be.
Beryllium is a member of group 2 in the periodic table. Beryllium has an atomic number of 4. This implies that it has four protons in its nucleus and four electrons in its shells. In a neutral atom, the number of electrons on the shells is equal to the number of protons in the nucleus.
The electronic configuration of Beryllium is 1s2 2s2. This implies that it should have two shells each containing only two electrons each.
Since we are using white foam balls for protons and black foam balls for neutrons, the clear plastic will contain four white foam balls and five black foam balls since the mass number of beryllium is 9 and number of neutrons = mass number - number of protons.
Four blue foam balls hanging from strings will represent the electrons around the nucleus.
Any model that corresponds to the description above is the correct answer.
Answer:
Explanation:
a. What is the mass number of the particle emitted from the nucleus during beta minus (β–) decay?
zero
The beta radiations are emitted in this reaction. The one electron is ejected and neutron is converted into proton.
⁴₆C → ¹⁴₇N + ⁰₋₁e
b. What kind of charge does the particle emitted from the nucleus during beta minus (β–) decay have?
Negative charge
Electron is emitted during beta decay and it carry negative charge.
c. What is another name for a beta minus (β–) particle?
Electron
During beta minus decay electron is emitted and neutron is converted into proton.
d. Write the balanced equation for the alpha decay that is below the “Show Equation.” Label the parent, daughter, and beta particle.
Equation is missing
a. What happens in the nucleus of an atom when an alpha particle is emitted?
When atom undergoes the alpha emission the original atom convert into the atom having mass number less than 4 and atomic number less than 2 as compared to the starting atom.
b. b. What happens in the nucleus of an atom when a beta particle is emitted?
When nucleus emit the beta particle neutron is converted into proton and this proton stay into the nucleus while at the same time electron is emitted. Thus atomic number is increased by one.
⁴₆C → ¹⁴₇N + ⁰₋₁e
Answer:
Alkanes
Explanation:
The description of the first molecule corresponds to a cycloalkane. In the cycloalkanes for each carbon atom there are 2 hydrogen atoms (CnH2n = C5H10).
The second molecule corresponds to an open chain alkane, where for every carbon atom there is double plus 2 hydrogen atoms (CnH (2n + 2) = C5H12)