Answer:
It traveled 24 centimeters
Explanation:
The displacement of the object is equal to the area under the velocity vs time graph.
We can split this graph into two shapes, a triangle and a rectangle. So the total area is:
A = ½bh + wh
A = ½ (4 s − 0 s) (4 cm/s) + (8 s − 4 s) (4 cm/s)
A = 8 cm + 16 cm
A = 24 cm
Answer:
Force that acted on the body was F = 13 N
Explanation:
If once accelerated, the body covers 60 meters in 6 seconds, then its velocity is 60/6 m/s = 10 m/s
When the force was acting (for 10 seconds) the object accelerated from rest (initial velocity vi = 0) to 10 m/s (its final velocity). therefore we can use the kinematic equation for the velocity in an accelerated motion given by:

which in our case becomes;

and we can solve for the acceleration as:
a = 10/10 m/s^2 = 1 m/s^2
Therefore the force acting on the body, based on Newton's 2nd Law expression: F = m * a is:
F = 13 kg * 1 m/s^2 = 13 N
There are times where the mass is less than the force of gravity or the gravitational pull. The gravitational pull will overpower the mass of the object, which is why you only notice the force of gravity and not the mass
Answer and Explanation:
Most of the distances in the galaxy are measured in light years instead of meter because the distances in galaxy are very large and it is very difficult to measure in meters and light year is the largest unit of distance so it is very easy to measure large distances in light year so we prefer light year instead of meters for measuring distances in galaxy.