Answer:
Hydrogen: -141 kJ/g
Methane: -55kJ/g
The energy released per gram of hydrogen in its combustion is higher than the energy released per gram of methane in its combustion.
Explanation:
According to the law of conservation of the energy, the sum of the heat released by the combustion and the heat absorbed by the bomb calorimeter is zero.
Qc + Qb = 0
Qc = -Qb [1]
We can calculate the heat absorbed by the bomb calorimeter using the following expression.
Q = C . ΔT
where,
C is the heat capacity
ΔT is the change in the temperature
<h3>Hydrogen</h3>
Qc = -Qb = -C . ΔT = -(11.3 kJ/°C) . (14.3°C) = -162 kJ
The heat released per gram of hydrogen is:

<h3>Methane</h3>
Qc = -Qb = -C . ΔT = -(11.3 kJ/°C) . (7.3°C) = -82 kJ
The heat released per gram of methane is:

I'm pretty sure the answer is 0.833 atm.
Hope I helped! <3
-cara
Answer:
Compounds formed from non-metals consist of molecules.
Explanation:
The atoms in a molecule are joined together by covalent bonds. These bonds form when atoms share pairs of electrons.
I hope I helped, please correct me if I'm wrong!
Answer:
0.1 mole of CH₄
Explanation:
From the question given above, the following data were obtained:
Volume of CH₄ = 2.24 L
Number of mole of CH₄ =?
The number of mole of CH₄ can be obtained as follow:
Recall:
1 mole of a gas occupy 22.4 L at stp. This implies that 1 mole of CH₄ occupies 22.4 L at stp.
22.4 L = 1 mole of CH₄
Therefore,
2.24 L = 2.24 × 1 mole of CH₄ / 22.4
2.24 L = 0.1 mole of CH₄.
Answer:
can you help mine please
How many molecules of chlorine are needed to react with 56.Og of iron to form Iron (III) chloride (FeCl3)?