I hope this helps answer some of your questions.
Answer:
double replacement
synthesis
double replacement
i think this one is decomposition
synthesis
double replacement
single replacement
single replacement
double replacement
single replacement .....
hopefully i help
Answer:
Yes, chloromethane has stronger intermolecular forces than a pure sample of methane has.
Explanation:
In both methane and chloromethane, there are weak dispersion forces. However, in methane, the dispersion forces are the only intermolecular forces present. Also, the lower molar mass of methane means that it has a lower degree of dispersion forces.
For chloromethane, there is in addition to dispersion forces, dipole-dipole interaction arising from the polar C-Cl bond in the molecule. Also the molar mass of chloromethane is greater than that of methane implying a greater magnitude of dispersion forces in operation.
Therefore, chloromethane has stronger intermolecular forces than a pure sample of methane has.
Answer: [A]: "<span><span>two atoms, both the same element, bonded together</span>".
</span><span>_____________________________________________________________</span>
Answer:
The correct option is;
2) Thermal energy increases by a factor of R
Explanation:
The equipartition energy theorem states that when molecules are in a state of thermal equilibrium, particles within the system posses equal average energy with each degree of freedom which can be known as energy due to a state of having a particular temperature or thermal energy given by the relation
= Kinetic energy of translation + Kinetic energy of rotation + Energy of vibration
For a mono-atomic gas,
= 3/2·n·R·T
For a diatomic gas,
= 5/2·n·R·T
For a solid element,
= 3·n·R·T
Therefore, as the temperature is doubled, the thermal energy increases by a factor of R.