The law applied here is Hooke's Law which describes the force exerted by the spring with a given distance. The equation for this is F = kΔx, where F is the force in Newtons, k is the spring constant in N/m while Δx is the displacement in meters.
If you want to find work done by a spring, this can be solved by using differential equations. However, derived equations are already ready for use. The equation is
W = k[{x₂-x₁)² - (x₁-xn)²],
where
xn is the natural length
x₁ is the stretched length
x₂ is also the stretched length when stretched even further than x₁
In this case xn =x₁. So, that means that (x₁-xn) = 0 and (x₂-x₁) = 11 cm or 0.11 m.
Then, substituting the values,
2 J = k (0.11² -0²)
k = 165.29 N/m
Finally, we use the value of k to the Hooke's Law to determine the Force.
F = kΔx = (165.29 N/m)(0.11 m)
F = 18.18 Newtons
Answer:
6227.866 N
Explanation:
F = G . m(goku) . m(planet) / d²
F = 6.674 x 10-¹¹ x 62 x 1.458 . 10¹⁵ / 31²
F = 6227.866 N
Answer:
b.only when the current in the first coil changes.
Explanation:
An induced current flow in the second coil only when there is a change in current in the first cool. A steady current will produce no change in flux (due to magnetic effect of a current) by the first coil, and according to Faraday, induced current is only produced when there is a change in flux linkage.
Answer:
= 15.57 N
= 2.60 N
= 16.98 N
The mass of the bag is the same on the three planets. m=1.59 kg
Explanation:
The weight of the sugar bag on Earth is:
g=9.81 m/s²
m=3.50 lb=1.59 kg
=m·g=1.59 kg×9.81 m/s²= 15.57 N
The weight of the sugar bag on the Moon is:
g=9.81 m/s²÷6= 1.635 m/s²
=m·g=1.59 kg× 1.635 m/s²= 2.60 N
The weight of the sugar bag on the Uranus is:
g=9.81 m/s²×1.09=10.69 m/s²
=m·g=1.59 kg×10.69 m/s²= 16.98 N
The mass of the bag is the same on the three planets. m=1.59 kg