Answer:
The heat transferred into the system is 183.5 J.
Explanation:
The first law of thermodynamics relates the heat transfer into or out of a system to the change of internal and the work done on the system, through the following equations.
ΔU = Q - W
where;
ΔU is the change in internal energy
Q is the heat transfer into the system
W is the work done by the system
Given;
ΔU = 155 J
W = 28.5 J
Q = ?
155 = Q - 28.5
Q = 155 + 28.5
Q = 183.5 J
Therefore, the heat transferred into the system is 183.5 J.
Answer:

It will float.
Explanation:
Hello.
In this case, given the width, length and height, we can compute the volume as follows:

Moreover, since the density is computed via the division of the mass by the volume:

We obtain:

In such a way, since the solid has a lower density than the water, we infer it will float.
Best regards.
Answer:
82.4 cm
Explanation:
The object and screen are kept fixed ie the distance between them is fixed and by displacing lens between them images are formed on the screen . In the first case let u be the object distance and v be the image distance
then ,
u + v = 184 cm
In the second case of image formation , v becomes u and u becomes v only then image formation in the second case is possible.
The difference between two object distance ie( v - u ) is the distance by which lens is moved so
v - u = 82.4 cm
Answer: The temperature of the water falls by 3.3°C
Explanation:
The heat change is related to the change in temperature by the equation
dH = m Cp dT
In this example, -2665 J = 193 g x 4.184 J/g°C x dT
so dT = -3.3 °C