Answer:
The dog catches up with the man 6.1714m later.
Explanation:
The first thing to take into account is the speed formula. It is
, where v is speed, d is distance and t is time. From this formula, we can get the distance formula by finding d, it is 
Now, the distance equation for the man would be:

The distance equation for the dog would be obtained by the same way with just a little detail. The dog takes off running 1.8s after the man did. So, in the equation we must subtract 1.8 from t.

For a better understanding, at t=1.8 the dog must be in d=0. Let's verify:

Now, for finding how far they have each traveled when the dog catches up with the man we must match the equations of each one.






The result obtained previously means that the dog catches up with the man 3.8571s after the man started running.
That value is used in the man's distance equation.


Finally, the dog catches up with the man 6.1714m later.
The force on a charged particle in a magnetic field is given by
the speed of the charged particle = 10842 m/s.
Explanation:
F= q V B sinθ
F=force=3.5 x 10⁻²N
q= charge= 8.4 x 10⁻⁴ C
B= magnetic field= 6.7 x 10⁻³ T
θ=35⁰
Thus the velocity is given by V=
V=(3.5 x 10⁻²)/[(8.4 x 10⁻⁴)(6.7 x 10⁻³)(sin35)]
V=10842 m/s
Answer: The answer is False
Explanation: This is for the one's in apex <>
Answer:
5.33kg
Explanation:
Given parameters:
Velocity of eagle = 15m/s
Kinetic energy of the eagle = 600J
Unknown:
Mass of the eagle = ?
Solution:
The kinetic energy of any body is the energy due to the motion of a body. There are different forms of kinetic energy some of which are thermal, mechanical, electrical energy.
The formula of kinetic energy is given as;
Kinetic energy =
m v²
where m is the mass, V is the velocity
substitute the parameters in the equation;
600 =
x m x 15²
225m = 1200
m =
= 5.33kg