1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
r-ruslan [8.4K]
4 years ago
12

The moon's mass is 7.34x10-kg and it is 3.8x10m away from earth. Calculate the gravitational force of attraction between earth a

nd moon
Physics
2 answers:
Nana76 [90]4 years ago
8 0
Again I think you did not give the right constants. So I would use the correct constants for mass of moon and distance from earth to moon.

<span>The formula for force of attraction between any two bodies in the universe
F  =  GMm / r^2.      (Newton's Universal law of Gravitation).

G = Universal gravitational constant, G = 6.67 * 10 ^ -11  Nm^2 / kg^2.
M = Mass of Earth. = 5.97 x 10^24 kg.
m = mass of moon = 7.34 x 10^22  kg.
r = distance apart, between centers = in this case it is the distance from Earth to the Moon
   = 3.8 x 10^8 m.

(Sorry I could not assume with the values you gave, they are wrong, and if we use them we would be insulting Physics).


So F = ((6.67 * 10 ^ -11)*(5.97 x 10^24)*(7.34 * 10^22)) / (3.8 x 10^8)^2.
  Punch it all up in your calculator.
 
I used a Casio 991 calculator, it should be one of the best in the world.Really lovely calculator, that has helped me a lot in computations like this. I am thankful for the Calculator.

F = 2.0240 * 10^ 20 N.
So that's our answer.
Hurray!!</span>




Ivahew [28]4 years ago
8 0
Using the gravity equation: force of gravity = (G*mass of object 1*mass of object 2)/distance between the objects^2, we can plug in the masses of the objects (5.97x10^24kg for earth, and 7.34x10^22kg for the moon) and the distance between the objects (3.8x10^8metres) and (6.67x10^-11 gravitational constant) for G, we get (6.67x10^-11*5.97x10^24*7.34^22)/(3.8x10^8)^2 which equals =2.02x10^20 which is the force of gravity
You might be interested in
On a distance vs. time graph, how do you know when the object is moving away from its starting position?
Ainat [17]
U know by if they are in first place
8 0
3 years ago
Read 2 more answers
You have just landed on Planet X. You take out a ball of mass 101 g , release it from rest from a height of 16.0 m and measure t
IRINA_888 [86]

Answer:

0.3817 N

Explanation:

Remark

One thing is certain: the ball has a mass of 101 grams wherever it is in the universe. That is not true of the force. The force on the moon is a whole lot less than it is on earth, and maybe planet x as well.

Givens

m = 101 g

vi = 0       That's what at rest means.

t = 2.91 s

d = 16 m

F= ?

Formulas

d = vi*t + 1/2*a * t^2

Force = m * a

Solution

16 = 0 + 1/2 a * 2.91^2

16 = 4.234 a                       Divide by 4.234

16/4.234 = a

a = 3.779

F = m * a

a = 3.779

m = 101 g = 1 kg / 1000 grams

m = 0.101 kg

F = 0.101 * 3.779

F = 0.3817N

8 0
3 years ago
If the volume is held constant, what happens to the pressure of a gas as temperature is decreased? Explain.
Lady bird [3.3K]

Answer:Decreases

Explanation:

Given

Volume is held constant that is it is a isochoric process.

We know that

PV=nRT

as n,V& R are constant therefore only variables are

P & T

so \frac{P_1}{T_1}=\frac{P_2}{T_2}

\frac{P_1}{P_2}=\frac{T_1}{T_2}

As T_1 is decreasing therefore Pressure must also decrease so that ratio remains constant.

6 0
3 years ago
Which law of motion describes squeal and oppisit forces of action and reaction​
Rom4ik [11]

These two forces are called action and reaction forces and are the subject of Newton's third law of motion. Formally stated, Newton's third law is: For every action, there is an equal and opposite reaction. The statement means that in every interaction, there is a pair of forces acting on the two interacting objects.


Hope this helps! :)

4 0
3 years ago
A block of mass 2 kg slides down a frictionless ramp of length 1.3 m tilted at an angle 25o to the horizontal. At the bottom of
marin [14]

Answer:

Diagrams in pictures

Explanation:

Using energy I can get

m g h = 1/2 m v^2

So the velocity at the end of the ramp is the squareroot of two times the initial height of the box times the gravity constant.

(H= 1,3m sin25)

V=2,32m/s

V= a t

And

X= v t +1/2 a t^2

Knowing v=2,32 m/s and x= 1,3 m

I can get

a= 6,21m/s2

F= m a

I can get the force of the box when it collides with the spring

F= 12, 425 N

The force the spring makes on the box then is

F = -12,425N = -k d

Then the spring's constant is k= 51,75N/m

To make the two diagrams I need the functions of time when the box slows down

I use the same two equations

V= a t

And

X= v t + 1/2 a t^2

Being now 2,32 my initial velocity and 0 my final velocity, and my distance 0,24 m.

I get there the time t=0,0689 seconds and the acceleration a= -33,67 m/s2 (negative because it's slowing down).

Then,

V(t)= - 33,67 m/s2 t for time between 0 and 0,689 sec

X(t)= 2,32 m/s t + 1/2 33,67 m/s2 t^2.

for time between 0 and 0,689 sec

Diagrams and equations are in the pictures

7 0
3 years ago
Other questions:
  • A very massive object A and a less massive object B move toward each other under the influence of gravity. Which force, if eithe
    12·1 answer
  • an electron is released from rest in a region of space with a nonzero electric field.1. As the electron moves, does the electric
    11·1 answer
  • In the bedroom of your house you would like to run a 240 W toward, a 30 W alarm clock, a 720 W tanning bed, and four 60 W lights
    12·1 answer
  • During which time period was the acceleration of the car the greatest?
    5·2 answers
  • What two simple machines make up an axe?
    11·1 answer
  • What are the three different types of muscle tissue?
    9·1 answer
  • Equivalent resistance between A and B.<br>A) 2.4 ohms<br>B)18 ohms<br>C) 6 ohms<br>D) 36 ohms ​
    13·2 answers
  • Someone please help me
    9·2 answers
  • Heat always transfers from substances with _____ thermal energy to substances with _______ thermal until both substances reach t
    6·1 answer
  • Calculate the frequency of a sound wave produced when a tennis racquet string is plucked. The tension of the string is 274 N, th
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!